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EXECUTIVE SUMMARY

OBJECTIVE

The objective of this work was to apply the strobe realtime clock synchronization
technique (introduced in a previous report) to serial busses and local area networks in
general. The work also applies the technique to the IEEE Standard 802.5 and the Fiber
Distributed Data Interface token ring local area network standards in particular.

RESULTS

The strobe distributed realtime clock synchronization technique, which has already
been incorporated into backplane bus standards, can also be applied to token ring local
area networks. The strobe is implemented as a frame protocol data unit whosc destination
address field is recognized by the strobe detector at all the participating nodes. The strobe
frame source and information fields support the strobe label. The strobe technique does
not require modification of existing local area network standards.

RECOMMENDATIONS

Strobe detection should be performed in hardware rather than in software because
hardware minimizes the variation in the time between reception of the strobe and capture
of the realtime clock value.

The realtime clock synchronization support hardware, when partitioned, should be
partitioned at the interface between the strobe detector, which is driven by the local area
network timing, and the adjustable realtime clock, which is driven by the clock oscillator
timing. The strobe signal, which interfaces the two sections, can serve as an interrupt to
notify the processor of the presence of a new realtime clock sample value.

NOTE: Section 5 highlights some of the major conclusions of this report. Sections 1
through 4 provide more detail as well as additional conclusions.
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1.0 INTRODUCTION

A previous report, Backplane Bus Distributed Realtime Clock Synchronization [11, pres-
ented methods of synchronizing the realtime clocks associated with a set of respective digital
processing modules interconnected through a backplane bus. All the methods were based on
the broadcast of a strobe signal over the backplane bus that simultaneously samples all the
realtime clocks being synchronized. The report described and compared various methods of
implementing realtime clocks that permit their rate of advance with respect to physical time
to be adjusted. It examired and made recommendations on various adjustable rate realtime
clock interface standardization issues. It also gave and evaluated software algorithms for
synchronizing adjustable rate realtime clocks.

This latest report now applies the strobe realtime clock synchronization technique, intro-
duced in the previous report, to serial busses and local area networks in general, and to the
IEEE 802.5 [2] and the Fiber Distributed Data Interface (hereafter called FDDI) [31 token
ring local area network standards in particular. Section 2 examines miscellaneous material
relating to adjustable rate realtime clocks; much of this material was introduced by the
previous report and is included here in the interest of providing greater clarity. Section 3
presents adjustable rate realtime clock hardware implementation methods considered supe-
rior to those of the previous report. Section 4 presents a hardware implementation of an
IEEE 802.5 strobe detector.

This report assumes familiarity with the concepts and terminology of the previous report.
It is strongly recommended that the reader unfamiliar with the previous report study it before
reading this report. It is also recommended that the reader be familiar with the IEEE 802.5
and FDDI local area network specifications.

1.1. REALTIME CLOCK SYNCHRONIZATION HARDWARE PARTITIONING

The realtime clock synchronization hardware can be partitioned into two major sections,
the strobe detector section and the realtime clock section. Figure 1 shows a block diagram of
the partitioning along with the various interfaces. The internal bus interconnects the

[1] D. R. Wilcox, Backplane Bus Distributed Realtime Clock Synchronization, NOSC TR 1400, Naval
Ocean Systems Center, Dec. 1990.
12] IEEE Standard 802.5-1989, Token Ring Access Method and Physical Layer Specification, Institute of
Electrical and Electronic Engineers, 345 E. 47th St., New York, NY 10017, Sept. 1989.
[3] Only need two documents for the material presented in this report: ANSI X3T9.5/88-148, FDDI
Physical Layer Protocol (PHY-2) (Maintenance Revision) Working Draft Proposed American National
Standard, American National Standards Institute, May 25, 1990, and ANSI X3T9.5/88-139, FDDI
Media Access Control (MAC-2) (Maintenan~ce Revision) Working Draft Proposed American National
Standard, American National Standards Institute, May 25, 1990.
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Figure 1. Realtime clock synchronization hardware partitioning.

components within the module or node. The external bus interconnects the module or node
with other modules or nodes, respectively. Realtime clock synchronization strobes are
broadcast over the external bus.

The strobe detector section consists of a strobe detector, an optional strobe address
register, and an optional strobe label register. The strobe detector generates a strobe signal
indicating when it detects broadcast to an address dedicated to the strobe appearing on the
external bus. The strobe signal is sent to the realtime clock section where it captures the
current time. The strobe address register makes the address dedicated to the strobe pro-
grammable by the processor. If there is no strobe address register, the recognition of a fixed
strobe address is incorporated into the strobe detector. The strobe label register captures the
strobe label. The strobe label uniquely identifies the strobe. The strobe label consists of two
components: the identity of the module or node that generated the strobe and the strobe
sequence number for the strobe from that module or node [4]. The purpose of the strobe
label is to detect race conditions involving multiple strobes in complex systems [5].

The strobe detector implementation depends upon the type of external bus broadcasting
the strobe. On a parallel backplane bus, the strobe detector is an address identity compara-
tor. On a serial backplane bus or a local area network, the strobe detector is a state machine.
The state machine detects the sequence of serial bits representing the strobe address. The

[41 For a backplane bus strobe label example, see IEEE P896.2, Futurebus+ Physical Layer and Profile
Specification, Draft 5.5, July 1991, sec. 3.2.2.12.4, p. 56. (This is an unapproved document. Do not
specify or claim conformance to this document.)

[5] See Wilcox, NOSC TR 1400, p. 5.
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implementation of the strobe detector may also depend on the partitioning employed by the
set of bus-interface integrated circuits to which it is connected.

The realtime clock section consists of the adjustable-rate realtime clock, the sample
register, and one or more optional interval timers. The adjustable-rate realtime clock inter-
faces to the host processor through the clock counter and through registers associated with
its particular method of controlling the clock rate. The sample register captures the value
contained in the clock counter immediately upon receiving the strobe signal from the strobe
detector.

There are various way to implement the adjustable-rate realtime clock. These include the
hidden offset method [61, the periodic phase modification method [71, and the phase accu-
mulation method [8j.

The design of the two major sections are independent of one another. The only interface
between them is the strobe signal. This permits the same realtime-clock-section integrated
circuit design to be used with a variety of different strobe-detector-section integrated circuit
designs. Conversely, it also permits the same strobe-detector-section integrated circuit
design to be used with a variety of realtime-clock-section integrated circuit designs. The
interconnecting strobe signal requires only a single integrated circuit pin.

The partitioning into these two major sections has an additional advantage. It isolates the
circuitry driven by the clock signal derived from the serial bus or local area network from the
circuitry driven by the clock signal derived from the realtime clock oscillator. These clock
signals are usually asynchronous of one another. With this partitioning, the only synchroni-
zation interface point between them is through the strobe signal.

1.2. LOCAL AREA NETWORK STROBE DETECTION

Strobes are broadcast over a local area network as frame protocol data units. Figure 2
shows the frame format for both the IEEE 802.5 19] and the FDDI [10] local area networks.
The destination address field contains a broadcast address identifying the frame as a strobe.
The address is assigned by the system designer, if programmable, or by the strobe detector
hardware designer, if not programmable. The source address field and the information field

[6] See Wilcox, NOSC TR 1400, pp. 9-12.

[7] See Wilcox, NOSC TR 1400, pp. 12-19. This report will provide additional material to that already
provided in NOSC TR 1400.

[8] See Wilcox, NOSC TR 1400, pp. 19-20. This method has been selected as the clock model within the
IEEE P1212 Control Status Register (CSR) specification. See IEEE P1212 Draft 4.0, Sept. 22, 1990, sec.

A-7.3, p. A44. (This is an unapproved draft. Do not specify or claim conformance to this document.)

191 See IEEE 802.5-1989, sec. 3.1.2, p. 23.

1101 See ANSI X3T9.5/88-139, FDDI Media Access Control (MAC-2), sec. 7.2.2, p. 33.
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IEEE 802.5

SD IACI FO DA SA IINFO J

REMAINDER

FDDI NOT USED

SD IFC DA ISA INFO

SD Starting Delimiter (1 octet)
AC Access Control (1 octet)
FC Frame Control (1 octet)
DA Destination Address (2 or 6 octets)
SA Source Address (2 or 6 octets)
INFO Information (0 or more octets)

Figure 2. Portion of frame formats used by strobe detector.

contain the strobe label. The source address field identifies the node generating the strobe.
The source node local area network interface automatically generates this field when the
frame is transmitted. The information field contains the strobe sequence number. While one
information field octet is sufficient, support for two octets has the benefit of making the
width of the strobe label an integer power of 2. The source node strobe generation software
creates the strobe sequence number. The remaining fields are ignored by the strobe detector
except possibly for error checking. Both IEEE 802.5 and FDDI transmit all octets, and the
symbols forming the octets, most-significant bit first [1 11.

Since strobes are simply an application of the local area network protocol, and not a
modification of the protocol, the strobe technique does not require any modification of
existing local area netwurk standards.

Reception of a strobe by a node triggers sample register capture of the local realtime
clock value. Reception of a strobe must also initiate the softvare needed to process the
recorded sample. The processor can initiate the software by simply processing the strobe
frame like any other local area network application input. The software can then extract the
strobe sequence number within the information field directly. Aiernatively, as shown in
figure 1, the processor can initiate the software through an interrupt ierived from the strobe

[111 See IEEE 802.5-1989, sec. 3.2.5.3, p. 30; ANSI X3T9.5/88-139, FDDI Media Access Control
(MAC-2), sec. A.3, pp. 79-80.
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signal emitted by the strobe detector. When the interrupt approach is used, the processor
does not need to receive the local area network strobe frame itself, provided that the strobe
detector section captures the entire strobe label. This means that the strobe detector section
must capture the strobe sequence number contained in the information field as well as the
strobe source contained in the source address field.

Local area network interface integrated circuit families generally partition their imple-
mentations at the interface between the physical layer and the media access control sublayer
of the data link layer. This is done because the requirements placed upon the logic technolo-
gy at the two layers are different. The physical layer hardware deals with high-speed serial
data, phase lock loop clock recovery, and exotic drive requirements. The media access con-
trol sublayer hardware, on the other hand, impiements highly complex, purely digital logic
that can operate at a lower speed by processing local area network data in parallel.

The strobe detector hardware obtains its local area network input by monitoring the local
area network receive data passing from the physical layer hardware to the media access
control sublayer hardware. The strobe detector does not interrupt or modify the data passing
through the interface. Its only impact is additional electrical loading on some of the local
area network interface integrated circuit output pins.

Conceptually, the local area network strobe detector can be logically partitioned into two
components, the octet state machine and the protocol state machine. The octet state
machine uses the unique coding of the protocol data unit starting delimiter field to deter-
mine the alignment needed to convert the serial local area network receive data stream into
an octet data stream. The octet data stream is sent to the protocol state machine. The proto-
col state machine searches for the sequence of octets defining a strobe, and when found,
generates the strobe signal and captures the strobe label.

Figure 3 shows a flow chart for the protocol state machine. Each state processes one
octet. States A through I, on the left side of the flow chart, detect the strobe. States J through
Q, on the right side of the flow chart, capture the strobe label. State B is omitted for FDDI
since, unlike IEEE 802.5, FDDI does not have an access control field octet in its frame
format. States F through I and states L through 0 are omitted when 2-octet addressing is
used instead of 6-octet addressing. Finally, states P and Q can be omitted when capture of
the strobe sequence number within the information field is unnecessary.

The protocol state machine can be implemented using a counter. The counter output
represents the state. State A, which waits for reception of a starting delimiter field octet, is
assigned the counter reset state. The counter resets after any state fails to meet the condi-
tions required to enter the next sequential state. For example, when the counter is in state C,
it is looking for a valid frame control field octet. If it sees one, the counter increments to

5
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Figure 3. Protocol state machine flow chart.
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state D; otherwise it resets to state A. There are no conditions placed on states J through Q. In
these states, the counter always increments to the next sequential state. In the case of state
Q, the next sequential state is state A.

1.3. RATIONALE FOR HARDWARE STROBE DETECTOR IMPLEMENTATION

The critical path for accurate realtime clock synchronization using the strobe technique
is from the physical broadcast of the strobe on the bus to the capture of the realtime clock
value in the sample register. The critical-path propagation delay includes the retransmission
delay of the local area network signal through the intermediate nodes and the propagation
delay through the local area network media interconnecting the nodes. It also includes de-
lays due to the asynchronous nature of the local area network signal timing with respect to
the realtime clock oscillator timing. Propagation delay through the intermediate nodes,
called retransmission delay, depends upon the local area network standard and upon the
integrated circuit implementation. Propagation delay through the media for fiber-optic cable
is about the same as for coaxial cable, or approximately 5 microseconds per kilometer [121.
All these delays are only a problem to the extent that they are both unknown and numerically
significant relative to the desired strobe sampling resolution. Local rate adjustment software
can easily adjust sample register values for known delays.

Since minor delays occurring before the strobe broadcast reaches the physical bus are
not in the critical path, strobes can be generated by software. They can use the same host
processor local area network interface used to generate other local area network traffic.
Strobe generation can be treated as an independent periodic realtime process executing
under the host processor operating system. The strobe generation process does not need be
incorporated within the operating system kernel nor have a high priority [13].

The strobe detector and sample register, which are in the critical path, are implemented
in hardware. Software is not used because it is difficult to accurately predict the delay
through the many layers of local area network, operating system, and realtime clock soft-
ware interfaces. One can get a feel for the many interfacing layers involved by examining an
implementation originally designed for the "statistically rambunctious Internet" 1141 wide-
area network environment. Figure 4 shows the critical path through the layers of the portable

1121 A typical fiber-optic cable figure of 5.085 microseconds per kilometer is given in FDDI Physical
Layer Protocol (PIIY-2), Annex A, pp. 45-47. Note that European numeric notation uses a comma for a
decimal point and a blank rather than a comma to separate three digit groups.

[131 See Wilcox, NOSC TR 1400, p. 6.

1141 See David L. Mills, Mea.sured P'erformance of the Network Time Protocol in the DARPA/NSF Inter-
net System, Dept. Electrical Engr., Univ. of Delaware, Newark, DE 19716, Tech. Rep. Udel-EE 89-9-3,
Sept. 1989, p. 15.
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critical path.
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Unix-oriented Network Time Protocol daemon implementation called xnptd [15J. Minor
variations in software delays are important but not critical because they are overshadowed
by the considerable accuracy lost due to variations in the propagation delay through the wide
area network. These delay variations are compensated over time through statistical filtering.
In a local area network environment, on the other hand, variations in propagation delay can
be controlled more tightly. Hardware implementation provides more accurate and robust
realtime clock synchronization.

1.4. IEEE 802.5 STROBE PROPAGATION DELAYS

The transmission rate of all the nodes in an IEEE 802.5 local area network ring is ulti-
mately derived from an oscillator in a single node called the active monitor. Nodes other
than the active monitor derive their transmission rate through phase lock loop synchroniza-
tion with their receive signal. Due to the nature of phase lock loops, there may be instanta-
neous variation between the reception rate and the transmission rate. This variation is called
jitter. The average rate, however, is that of the oscillator in the active monitor.

IEEE 802.5 employs four types of encoded symbols. They are designated 1, 0, J, and K
[16]. Unique representations [17] for the four symbol types requires selection of binary
states during two half-symbol periods, called unit intervals. Clocking the node internal cir-
cuitry at the half-symbol or unit-interval rate, rather than at the symbol rate, simplifies data
encoding and decoding. This implies that the actual frequency of the oscillator in the active
monitor, and the nominal frequency of the receive clock recovered by the phase lock loops in
all the nodes, is twice the symbol rate, or 8 megahertz for the 4-megahertz bus and 32
megahertz for the 16-megahertz bus.

In addition to the oscillator, the active monitor contains the latency buffer [181 of the
ring. The latency buffer intentionally delays the active monitor receive signal before retrans-
mitting it around the ring. As shown in figure 5, the latency buffer can be partitioned into
two components, the circulation buffer [19] and the elastic buffer [20].

The circulation buffer is a serial-input-serial-output shift register. It ensures that there is
sufficient ring latency to guarantee that all 24 symbols (48 unit intervals) forming a token

[151 The figure was derived through examination of the source code listing for Version 1.3 of the xnptd
Network Time Protocol daemon obtained via "anonymous ftp" from the University of Delaware.
[161 See IEEE 802.5-1989, sec. 5.1, pp. 65-67.

[171 The representations are unique in the sense that the next bit can be uniquely determined given the
preceding bit. This qualification is due to differential Manchester encoding.
[18] See IEEE 802.5-1989, sec. 3.7, pp. 41-42, and sec. 5.5, pp. 67-68.

119] The term "circulation buffer" is the author's own creation.
[201 See IEEE 802.5-1989, sec. 5.5, p. 68.
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Figure 5. IEEE 802.5 latency buffer.

protocol data unit can circulate, without the symbols at the beginning of the sequence over-
writing the symbols at the end of the sequence, when all nodes are in the repeat mode. The
time required to transmit a symbol is 250 nanoseconds for the 4-megahertz bus and 62.5
nanoseconds for the 16-megahertz bus. The delay through the 24-symbol circulation buffer
is 6 microseconds for the 4-megahertz bus and 1.5 microseconds for the 16-megahertz bus.

The elastic buffer is a first-in-first-out (FIFO) memory. The elastic buffer compensates
for jitter accumulated by the signal as it propagates from the source of its clock at the active
monitor, through the nodes around the ring, and finally back to the active monitor. The
elastic buffer is initially filled to half its capacity. Data are entered into the elastic buffer by
the receive clock derived from the phase lock loop. Data are removed from the elastic buffer
by the transmit clock derived from the oscillator. The delay provided by the elastic buffer
expands or contracts, as needed, to compensate for the active monitor receive signal being
slightly ahead or slightly behind synchronization with the active monitor oscillator.

The 4-megahertz bus requires an elastic buffer with an initial half-capacity delay of three
symbols and a range of zero to six symbols [21]. The total delay through the 4-megahertz
latency buffer is thus 27 symbols plus or minus 3 symbols, or 6.75 microseconds plus or
minus 0.75 microsecond. The 16-megahertz bus requires an elastic buffer with an initial
half-capacity delay of 16 symbols and a range of 0 to 32 symbols. The total delay through the
16-megahertz latency buffer is thus 40 symbols plus or minus 16 symbols, or 2.5 microsec-
onds plus or minus 1 microsecond.

[211 See IEEE 802.5-1989, sec. 5.5, p. 68.
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These figures represent the minimum delays through the active monitor. The delays may

be longer through a particular implementation. The Texas Instruments TMS380C16, for

example, provides an elastic buffer with a range of 0 to 15 unit intervals, or 0 to 1.875
microseconds for the 4-megahertz bus, and a range of 0 to 63 unit intervals, or 0 to 1.9675

microseconds for the 16-megahertz bus [221.

The retransmission delay through nodes built using the Texas Instruments TMS380 fam-

ily of integrated circuits consists of a clocked delay through a known series of internal flip-
flops, plus additional logic propagation delay through the receive and transmit circuitry

[23]. The clocked delay for both the "first-generation" and the "second-generation" compo-
nents is 4.5 unit intervals. A unit iiterval can be split because the clock signal has both a
rising and a falling edge. The 4.5 unit-interval clocked delay for the 4-megahertz bus is 562.5

nanoseconds and for the 16-megahertz bus is 140.6 nanoseconds. Texas Instruments has not

characterized the additional logic propagation delay through the receive and transmit cir-
cuitry. They estimate, but do not guarantee, that the delay is between 80 and 200 nanosec-

onds for the "first-generation" components and between 50 and 150 nanosceonds for the
"second-generation" components.

Strobe resolution over the IEEE 802.5 local area network cannot be better than the local

area network jitter. The worst-case jitter is plus or minus 0.75 microsecond for the 4-mega-
hertz bus and plus or minus 1 microsecond for the 16-megahertz bus. If the location of the

active monitor at the time of strobe transmission is not known to the processor software,

strobe resolution cannot be better than plus or minus half the maximum latency buffer
delay, or plus or minus 3.75 microseconds for the 4-megahertz bus and plus or minus 1.75
microseconds for the 16-megahertz bus [241. These latter figures include the effects of jitter.

If nothing is known by the processor software about the current local area network ring

configuration at the time of strobe transmission, strobe resolution is only slightly better than
plus or minus half the maximum possible propagation time around the ring. The propaga-

tion time around the ring is called the ring latency.

There is overhead associated with determining the ring configuration. If a strobe resolu-
tion of plus or minus half the maximum ring latency is good enough, then ignoring ring

configuration is the preferred approach.

1.5. IEEE 802.5 RING CONFIGURATION

The IEEE 802.5 media access control sublayer provides a mechanism for determining

the ring configuration. Each node maintains the address of its nearest upstream neighbor

1221 See Texas Instruments, TMS380 Second-Generation Token Ring, 1990, sec. 2.3.3, p 2-10.
[231 See Appendix A.
[24] For more on jitter, see IEEE 802.5-1989, sec. 7.5.3, pp. 86-88.
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(UNA) currently inserted within the ring. The upstream neighbor's address is captured as
follows. The last octet of a frame protocol data unit is the frame status field [25]. The frame
status field contains two identical copies of a symbol called the address recognized bit. The
address recognized bit is initialized as zero by the node originating the frame. Any node
recognizing the frame destination address as one of its own addresses retransmits the bit as
a one as the frame passes through the node. If the bit enters the node as a zero and exits as a
one, the node knows that it is the first node to recognize the destination address. By broad-
casting a frame with a destination address that all nodes recognize, the first node to recog-
nize the destination address is the first node inserted within the ring downstream from the
node that originated the frame. The first node to recognize the destination address can then
capture its upstream neighbor's address by copying the frame source address field.

The act of inserting or removing a node from the ring, effected by the trunk coupling unit

[26], causes a temporary break in the transmission path through the media [27]. The node
detecting the break on its receive side, called the beacon node, transmits a "beacon" media
access control frame to inform nodes downstream of the break and its location. When media
connection is reestablished, the active monitor broadcasts to all nodes the "active monitor
present" media access control frame [281. The first node downstream from the active moni-

tor locally records its upstream neighbor's address, which is the address of the active moni-
tor. The node then broadcasts to all nodes a "standby monitor present" media access control
frame. This allows the next node downstream to obtain its upstream neighbor's address. The
process continues until all nodes have obtained their upstream neighbors' addresses.

The media access control sublayer software contains a component, called the configura-

tion report server, which maintains the address of the active monitor and the address of the
upstream neighbor of each node [29]. The configuration report server obtains this informa-
tion by monitoring the broadcast of "report new active monitor" [30] and "report stored
upstream neighbor's address" [31] media access control frames. Software can reconstruct
the ring configuration by tracing the backward chain of upstream neighbors' addresses.

Unfortunately, the configuration report server indicates the current ring configuration,
not necessarily the ring configuration at the time of strobe transmission. There is no simple
way to sample the ring configuration at the time of strobe transmission. One could include
ring configuration data as part of the strobe information field when the software creates the

[25] See IEEE 802.5-1989, sec. 3.2.8, pp. 31-32.

[26] See IEEE 802.5-1989, sec. 1.2, p. 16; sec. 7.4, pp. 82-84.

[271 See IEEE 802.5-1989, sec. 7.4.2, p. 84.

[28] See IEEE 802.5-1989, sec. 4.1.6, p. 48.

[29] See IEEE 802.5-1989, sec. 1.2, p. 14; sec. 2, pp. 21-22; sec. 3.2.4.1, p. 28; sec. 4.1.9, p. 49.

[301 See IEEE 802.5-1989, sec. 3.3.1.14, p. 34.
[31] See IEEE 802.5-1989, sec. 3.3.1.18, p. 34.
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strobe, but there still is no guarantee those data will match the actual ring configuration
when the strobe reaches the local area network media. Furthermore, collecting and packing
ring configuration data for every strobe creates considerable overhead, which is wasteful
when one considers that the data are seldom used.

Rather than trying to capture the ring configuration at the time of strobe transmission, it
is far easier to simply invalidate strobes that occur close to changes in ring configuration.
Before processing a realtime clock sample value, the realtime clock synchronization soft-
ware checks to see if the local area network has recently undergone, or currently is undergo-
ing reconfiguration. Due to delays in updating the configuration report server internal data,
there is a possible race condition in which the realtime clock synchronization software pro-
cesses a strobe sample without being aware that the actual network configuration has
changed. The impact of the race is minimal, however, since it is quickly caught and little
damage can accumulate in the realtime clock synchronization during the short period of
time before it is caught. When the processor receives notification from the local area net-
work software of a ring reconfiguration or fault, it calls the realtime clock synchronization
software so that the realtime clock synchronization software can detect the race condition,
and if necessary, correct the damage.

1.6. FDDI STROBE PROPAGATION DELAYS

FDDI defines 25 types of symbols [32], of which 16 are used to represent 4-bit numeric
data and the remaining nine are control symbols. Each symbol is encoded as 5 code bits
[33]. FDDI uses the term "code bit" for what IEEE 802.5 calls the binary value within a unit
interval. Protocol data units are defined in terms of octets. Every FDDI octet consists of two
symbols. The gap between protocol data units contains idle control symbols. The number of
idle symbols in the gap may be either even or odd.

Each FDDI node uses its own oscillator [34] to clock its transmit signal and its own phase
lock loop to synchronize with its receive signal. The FDDI oscillator frequency is 125 mega-
hertz. Since 4-bit numeric data is encoded as 5 code bits, the burst data rate is four-fifths of
125 megahertz, or 100 megahertz.

Each node must compensate for jitter between its local oscillator frequency and its phase
lock loop frequency. This differs from IEEE 802.5, where jitter compensation is only neces-
sary in a single node called the active monitor. The use of an independent oscillator at each
1321 See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 3.35, p. 6.; sec. 7.2, p. 17;
symbol encoding table p. 23.

[331 See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 3.2, p. 4.; sec. 7.1.1, p.
16.

1341 See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.1.2, p. 26.
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node, as shown below, greatly complicates FDDI jitter compensation in comparison to that
for IEEE 802.5.

FDDI has two components for jitter compensation, the elasticity buffer [35] and the
smoother [361. The fixed-delay function, performed by the circulation buffer in IEEE 802.5,
is incorporated within the smoother in FDDI. The variable-delay function, performed by the
elastic buffer in IEEE 802.5, is performed at the code bit level in the elasticity buffer and at
the symbol level by the smoother in FDDI.

The elasticity buffer is a first-in-first-out memory used as a variable-length shift register
1371 to delay the local area network code bits propagating through it. The elasticity buffer is
initialized to a delay of half its capacity. The delay expands or contracts, as needed, to
compensate for differences between the phase lock loop frequency derived from the receive
signal and the local oscillator frequency used for the transmit signal. The delay is adjusted,
as necessary, during the gap between protocol data units. If the delay is greater than half the
elasticity buffer capacity and expanding, the adjustment removes an idle symbol from the
gap. If the delay is less than half the elasticity buffer capacity and contracting, the adjust-
ment inserts an additional idle symbol into the gap.

An elasticity buffer implementation that inserts or deletes symbols in pairs rather than
one at a time is also permitted [381. Such an implementation inserts and deletes symbol
pairs half as frequently and requires twice the capacity compared to one that inserts and
deletes symbols individually.

The FDDI specification places limits on the oscillator drift and on the length of protocol
data units. Assuming that the elasticity buffer is properly adjusted immediately before the
protocol data unit, these limits prevent the elasticity buffer from expanding or contracting
beyond its capacity in the middle of a protocol data unit. The required elasticity buffer
capacity is computed as follows [39]. The maximum frame length is 9000 symbols [40]. At 5
code bits per symbol, this is equivalent to 45,000 code bits. Local oscillators are required to

135] See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.1.2, p. 26; sec. 8.6, pp.

29-31.

[36] See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.8, pp. 32-40.

[37] The elasticity buffer can be described alternatively as a circular queue whose input and output point-
ers are counters clocked by the receive and transmit signal clocks, respectively. For implementation de-
tails, see Jerry D. Hutchison, Christopher Baldwin, and Bruce W. Thompson, "Development of the FDDI
Physical Layer," Digital Technology Journal, v. 3, n. 2, Spring 1991, pp. 22-24.

[38] See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.8.1, p. 34.

1391 See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.6, p. 29.
[40] See ANSI X3T9.5/88-139, FDDI Media Access Control (MAC-2), sec. 7.2.3, p. 33. A typo in the
heading identifies this as sec. 7.2.1.
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have a drift no greater than plus or minus 50 parts per million, or 0.005 percent [41]. The
maximum drift between two such oscillators occurs when they drift in opposite directions.
The maximum drift between oscillators is thus plus or minus 100 parts per million, or 0.01
percent [42]. Taking 0.01 percent of 45,000 code bits yields a drift error of 4.5 code bits.
Since the oscillators are independent, there is also a possible phase error between them of
plus or minus half an oscillator cycle, or plus or minus 0.5 code bits. Thus the elasticity
buffer must support a range of at least plus or minus 5 code bits, which is plus or minus the
length of one idle symbol, per gap between protocol data units.

The elasticity buffer compensates for the receive signal frequency of a node being faster
than its transmit signal frequency by periodically deleting a symbol, or a pair of symbols, in
the gap between protocol data units. As the difference between the frequencies increases,
the rate at which symbols are deleted from these gaps also increases. Consider a series of
nodes such that each node transmits at a slightly higher frequency than the next downstream
node. Each node in the series, except perhaps the first one, has a receive frequency greater
than its transmit frequency. A situation can arise where enough error has accumulated inde-
pendently in each node so that they each decide to delete symbols from the same gap be-
tween protocol data units. There is obviously a problem if the number of symbols deleted is
greater than the number of symbols in the gap [431.

The purpose of the smoother is to prevent the gap between protocol data units from
becoming too small 144]. In basic mode, the smoother seeks to maintain a minimum gap size
of 14 symbols [45]. If the gap falls below 14 symbols, the smoother inserts idle symbols. If
the gap exceeds 14 symbols, the smoother deletes idle symbols previously inserted. The goal
of 14 symbols was selected because the media access control sublayer of a node is not
required to copy into the node frames shorter than 12 symbols [46], and an additional pair of
symbols may be lost in the elasticity buffer of the next downstream node. Hybrid mode is
similar, except that the smoother seeks to maintain a minimum gap size of five symbols.

Both the elasticity buffer and smoother affect the obtainable strobe resolution. The
worst-case elasticity buffer situation is just prior to its accumulation of enough error to cause
it to insert or delete a symbol or a pair of symbols. If it inserts or deletes one symbol at a
time, then the strobe resolution through it is plus or minus one symbol. If it inserts or deletes
[411 See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.1.2, p. 26.

[42] Ibid.

[431 For statistical simulation results on how often this occurs, see Jerry D. Hutchison, Christopher Bald-
win, and Bruce W. Thompson, "Development of the FDDI Physical Layer," Digital Technology Journal,
v. 3, n. 2, Spring 1991, pp. 24-25.

[44] See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.8, p. 32.

[45] See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.8, p. 33.

[461 See ANSI X3T9.5/88-139, FDDI Media Access Control (MAC-2), sec. 7.3.1, p. 33.
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a pair of symbols at a time, then the strobe resolution through it is plus or minus two sym-
bols. Since there are 5 code bits per symbol, and each code bit requires 8 nanoseconds to
transmit at 125 megahertz, the strobe resolution through the elasticity buffer is plus or
minus 40 nanoseconds if it inserts or deletes one symbol at a time, and plus or minus 80
nanoseconds if it inserts or deletes a pair of symbols at a time.

The worst-case situation involving both the smoothers and the elasticity buffers is as
follows. Recall the example above where each node in a series of nodes receives at a slightly
higher frequency than it transmits. As noted above, it is possible for the elasticity buffers in
the nodes to decide, independently of one another, to delete symbols simultaneously at the
next gap between protocol data units. Assume this takes place at a gap called gap A. As-
sume, further, that gap A contains only the minimum number of symbols. The smoothers
maintain the minimum number of symbols in gap A by inserting symbols ot their own. The
protocol data unit following gap A passes. The gap after it, call it gap B, is very long. The
smoothers reclaim the symbols they inserted previously into gap A by deleting the same
number of symbols from gap B. Finally, assume that gap B is so long that it allows the
elasticity buffers time to get into the same situation that created their simultaneous deletion
of symbols from gap A in the first place. Now symbols are being deleted from gap B by both
the elasticity buffers and the smoothers simultaneously. The number of symbols in gap B is
reduced by the sum of the number of symbols deleted by the elasticity buffers from gap A
and the number of symbols reclaimed after smoothing gap A. In other words, in the worst
case the number of symbols is reduced by twice the number deleted by the elasticity buffers.

In addition to the degradation in strobe resolution due to the smoother and elasticity
buffer, there is also degradation from the quantization error due to the receive signal being
asynchronous with the local oscillator. This error is plus or minus half of a code bit time,
which at 125 megahertz is 4 nanoseconds.

The resolution of a strobe as it passes through an FDDI local area network node is
degraded by the sum of twice the resolution degradation through the elasticity buffer plus
the code bit quantization error. For a node with an elasticity buffer that inserts or deletes
symbols individually, the total is 0.084 microseconds. For a node with an elasticity buffer
that inserts or deletes symbols in pairs, the total is 0.164 microseconds [47]. These numbers
reflect the worst-case situation. Given a large number of nodes, the worst-case situation,
while possible, is highly unlikely. The actual strobe resolution may be better represented as
a binomial distribution for which the worst-case situation limits the domain of the
distribution.

[471 See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), Annex A, pp. 45-46.
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As was the case for IEEE 802.5, FDDI must provide sufficient ring latency for a token
protocol data unit to circulate [48]. The smallest possible token contains 5 octets [491. The
5-octet minimum delay is guaranteed by the requirement that each of the two or more nodes
in the ring provide at least 3 octets of delay in repeat mode. Since there are two symbols per
octet, 5 code bits per symbol, and 8 nanoseconds of delay per code bit at 125 megahertz, the
minimum delay through a node is 0.24 microseconds.

Without knowledge of the ring configuration, the obtainable strobe resolution is slightly
better than the ring latency.

[48] See ANSI X3T9.5/88-148, FDDI Physical Layer Protocol (PHY-2), sec. 8.1.3, p. 27.

[49] See ANSI X3T9.5/88-139, FDDI Media Access Control (MAC-2), sec. 7.2.1, p. 32.
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2.0 REALTIME CLOCK TOPICS

This section presents miscellaneous adjustable-rate realtime clock topics. These topics
apply to both backplane bus and local area network distributed realtime clock synchroniza-
tion. Due to its length, adjustable-rate realtime clock hardware minimization is presented
separately in the section immediately following this section.

2.1. INTERVAL TIMER IMPLEMENTATION METHODS

Interval timers are used to interrupt or release processing at a specific future time. The
occurrence of the specific future time is called a time event. Interval timer applications
include peripheral driver watchdog timers, time-slice resource scheduling, network commu-
nication packet flow control, physical world realtime event activation, and strobe generation
for realtime clock synchronization.

Preemptive operating systems typically schedule time events using a single interval tim-
er. Time events are recorded in memory on a queue arranged in the order that they are to
occur. The interval timer is assigned to the time event that occurs soonest, which is also the
one at the front of the queue. When the time event occurs, the operating system obtains its
next time event from the queue, loads the interval timer with the value needed to signal the
next time event, and removes the expired time event from the queue. The interval timer is
also loaded when the system inserts a new time event occurring sooner than the time event
currently using the interval timer. The new time event is also placed at the front of the
queue.

Since the time event queue is sorted with the soonest time event at the front, determining
the next time event when the current time event expires is very efficient. On the other hand,
insertion of a new time event requires a linear search to properly place it within the queue.
This is inefficient when the number of time events is large. Employing a heap with the
soonest time event on the top [501, or employing separate time events queues for short-term,
medium-term, and long-term time events [511, improves efficiency.

Before embarking on the construction of an adjustable-rate interval timer, it is advanta-
geous to consider whether a fixed-rate interval timer suffices. There are two reasons why
this may be the case.

[501 See R. E. Barkley and T. P. Lee, "A Heap-Based Callout Implementation to Meet Real-Time
Needs," USENIX Association Conference Proceedings, June 1988, pp. 213,222.

[51] See G. Varghese and T. Lauch, "Hashed and Hierarchical Timing Wheels: Data Structures for the
Efficient Implementation of a Timer Facility," Proceedings of the Eleventh Symposium on Operating Sys-
tems Principles," Nov. 1987, pp. 25-38.
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First, short-term time events do not allow a fixed-rate interval timer to accumulate much
oscillator drift error in a short period of time. Nearly all crystal oscillator specifications, for
example, limit drift to within 100 parts per million or better. Assuming no compensation for
drift, a 1-millisecond time interval has a maximum error of 100 nanoseconds. This is of the
same order of magnitude as a few processor instruction execution times and is generally
shorter than the process context switching time. Therefore, the fixed-rate interval timer
resolution may be good enough for the short-term time events of many software-intensive
applications.

A long-term time event requiring accuracy can be converted into an anticipatory long-
term time event not requiring accuracy followed by a short-term time event correcting any
accuracy errors. The anticipatory long-term time event gets within range of a sufficiently-
accurate short-term time event without passing the desired event time. When the anticipato-
ry long-term time event occurs, the associated processire creates the short-term time event
using the accurate time of day to reach the desired event time.

Second, the application, as reflected by its supporting operating system, may not require
accurate interval timing. Time-sharing operating systems, such as Unix [521, use the inter-
val timer to partition time into time slices of uniform duration. Time events are processed at
time-slice boundaries. Time events have a coarser time granularity than those for preemp-
tive operating systems. There is generally no requirement to make the duration of time slices
exact as long as their variation does not cause drift in the time-of-day realtime clock or in the
time of occurrence of long-term time events.

Adjustable-rate interval timer hardware implementation depends on the implementation
method used for the rest of the adjustable rate realtime clock.

The hidden offset method 1531 partitions the clock counter into a most-significant por-
tion visible to the application and a least-significant portion visible only to the realtime clock
synchronization algorithm. The interval timer operates in parallel with the most-significant
portion of the clock counter. Both the interval timer and the most-significant portion of the
clock counter are clocked by the carry output from the least-significant portion of the clock
counter. The interval timer decrements at the same time that the most-significant portion of
the clock counter increments.

The periodic phase modification method 1541 increments the clock counter on each cycle
of the phase counter. The interval timer decrements using the same phase counter output

1521 See Maurice J. Bach, The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs,
New Jersey, 1986, pp. 260-264. Also see Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels,
and John S. Quarterman, The Design and Implementation of the 4.3BSD Unix Operating System. Addi-
son-Wesley, Reading, Massachusetts, 1989, pp. 50-53.

1531 See Wilcox, NOSC TR 1400, pp. 9-12.
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signal used to increment the clock counter. This is the same approach used to implement the
rate-adjustment counter [55]. The rate-adjustment counter is, in reality, a special-purpose
interval timer dedicated to controlling the clock itself.

The phase accumulation method [56] offers two alternatives. One could implement the
interval timer function as an accumulator similar to the one used for the clock value. A less
costly and slightly less accurate approach is to implement the interval timer as a simple
counter that counts in the units of tick periods. In the latter case, software converts the
desired time interval into an equivalent number of tick periods by multiplying the time
interval by the inverse of the tick period. While this approach does not take into account
variation in the tick period after initialization of the interval counter, the impact of such
variation is minor over a short time interval since there is insufficient time for much error to
accumulate.

2.2. RATIONALE FOR THE PHASE COUNTER

The periodic phase modification method may seem unnecessarily complex 157]. Consid-
er an alternative method called the tick modification method. It differs from the phase modi-
fication method in that the tick modification method does not define a phase counter
between the oscillator and the clock counter. In the phase modification method, the clock
counter increments at approximately the frequency of the oscillator divided by the number
of states in the normal phase counter cycle. In the tick modification method, on the other
hand, the clock counter increments at approximately the same frequency as the oscil!ator.

As is the case for the periodic phase modification method, the tick modification method
determines whether the local clock countcr is running too fast or too slow by processing the
sample values captured by consecutive strobes. The tick modification method controls the
clock counter rate as follows. Define a tick as the pulse whose rising edge causes the clock
counter to increment by one. If the clock counter is running too fast, occasionally it deletes a
periodic oscillator tick. If the clock counter is running too slow, occasionally it inserts an
additional tick between two periodic oscillator ticks.

The tick modification method seems to avoid the notion of phase altogether. Unfortu-
nately, the hardware implementation of the tick modification method is not as simple as it
may first appear. Figure 6 shows the tick signal waveform that increments the clock counter
for both the case of deleting a tick and of inserting a tick. There is no difficulty in deleting a

[541 See Wilcox, NOSC TR 1400, pp. 12-19.
1551 See Wilcox, NOSC TR 1400, p. 15.

[561 See Wilcox, NOSC TR 1400, pp. 19-20.

1571 The necessity of a phase counter was first challenged within a negative ballot to an IEEE 896.3 draft
in the Spring of 1991.
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Figure 6. Tick modification method waveforms and phases.

tick; the problem is in inserting a tick. Inserting a tick means placing an additional tick pulse
entirely between two existing periodic tick pulses. The additional pulse must be entirely

between the periodic pulses because that is the only way to generate two rising edges, one
for the inserted tick and one for the periodic tick. Any overlap of the pulses generates only
one rising edge. The two pulses divide the tick signal cycle into four time intervals. They are

" the time before the inserted tick rising edge when the tick signal is low,

• the time after the inserted tick rising edge when the tick signal is high,
" the time before the periodic tick rising edge when the tick signal is low, and
" the time after the periodic ick rising edge when the tick signal is high.

The four time intervals may differ in duration. Since phase is defined as a fractional part of
a periodic signal cycle, the four time intervals are, by definition, four phases of the tick

signal cycle. Therefore, the tick modification method does not avoid the concept of phase.
Furthermore, the only way for hardware to guarantee the generation of four unique sequen-

tial states is for it to have a four-state sequential state machine of some sort. Whatever one
chooses to call it, that state machine serves the same purpose as the phase counter.

The rate adjustment resolution of the phase modification method is better than that for

the tick modification method. The phase modification method inserts or deletes a single
phase from the cycle of the phase counter during modified cycles. As can be seen from
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figure 6, the tick modification method, on the other hand, makes a full cycle adjustment,
consisting of at least four phases, when it inserts or deletes a tick.

2.3. SOFTWARE READ APPROACH ATOMIC ACCESS

Processor accesses to the clock counter must be atomic when the clock counter is wider
than the processor access path to it [58]. Figure 7 shows an example of the consequences of
a processor read access that is not atomic. The clock counter is 64 bits wide and the proces-
sor access path to it is only 32 bits wide. The processor needs two accesses, one to the
most-significant half and one to the least-significant half, to obtain the entire contents of
clock counter. The clock increments the clock counter independently of the processor. Peri-
odically the increment causes the propagation of a carry from the least-significant half into
the most-significant half of the clock counter. When this occurs between the time that the
processor reads the most-significant half and the time that the processor reads the least-
significant half, the processor obtains an invalid clock value. It is invalid because it is a mix
of portions from two different clock values. The most-significant half reflects the clock value
before the carry propagation and the least-significant half reflects the clock value after the
carry. The error is large, as the example illustrates. The problem exists regardless of which

64 BITS -I

I- 32 BITS -INLI 32 BITS

PROCESSOR READS
MOST-SIGNIFICANT HALF OF [oooo00ooFFFFFFFF
CLOCK COUNTER

CLOCK TICK UPDATES f
BOTH HALVES OF 0 0 0 0 0 00 110 0 0 0 0 0 0 0
CLOCK COUNTER I T

PROCESSOR READS
LEAST-SIGNIFICANT HALF OF 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
CLOCK COUNTER

PROCESSOR OBTAINS [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INCORRECT CLOCK VALUE

Figure 7. Clock counter atomii. read access problem.

[581 See Wilcox, NOSC TR 1400, pp. 21-26.
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half of the clock counter the processor accessed first, and regardless of whether t'e proces-
sor access is a read or a write.

The software read approach [59] is a popular solution for processor atomic read access.
The software makes three accesses rather than two. First the most-significant portion of the
clock counter is read, then the least-significant portion is read, and finally, the most-
significant portion is read again. It is assumed that all three reads take place in a time
interval shorter than half the length of time between successive internal carry propagations
from the least-significant portion to the most-significant portion. The software compares the
first access with the third access. If they returned the same value, which is almost always the
case, then no carry propagation from the least-significant portion into the most-significant
portion took place between the time of the first access and the third access. The clock value
is reconstructed by concatenating the most-significant portion read by either the first or the
third access to the least-significant portion read by the second access. If, on the other hand,
the first and third accesses obtain different values, a carry propagation did take place. There
are a number of alternative methods for reconstructing the clock value in that case.

The simplest reconstruction method concatenates least-significant zero bits to the most-
significant portion of the clock value read by the third access. This method is based on two
assumptions. First, it assumes that the effects of carry propagation are always included in
the reconstructed clock value [601 because the third processor access reflects the situation
after any carry propagation between the first and the third processor access. Second, it
assumes that the period between the first and the third processor accesses is shorter than the
period between clock ticks. A tick that generates carry propagation from the least-significant
portion into the most-significant portion of the clock counter leaves all zero bits in the least-
significant portion and increments the most-significant portion. The use of zero bits in the
reconstructed clock value represents the correct clock value if no clock ticks occur after the
one that generated the carry. This is ensured by requiring that there be no more than one
clock tick between the first processor access and the third processor access, namely, the tick
that potentially generates the carry.

Two other methods for reconstructing the clock value overcome the limitations of the two
assumptions above.

The first method makes a fourth processor access, this time to the least-significant por-
ion of the clock counter. It reconstructs the clock value by concatenating the values read by
the third and fourth accesses, and then corrects the result by subtracting the execution time

[591 See Wilcox, NOSC TR 1400, pp. 21-23, 25-26.

1601 One can also make the opposite assumption, that the effect of carry propagation is never included in
the ieconstructed clock value, by using the first rather than the third processor access and concatenating
all one bits rather than all zero bits.
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expended by the software over and above what it needs for the case of the first and third
accesses producing the same result. This obviously requires the reconstruction to be uninter-
ruptible so that the subtracted execution time is a known constant.

The second method uses the values already obtained from the three original processor
accesses of the clock counter rather than performing additional accesses. The most-
significant bit of the value read by the second access is examined. If it is a one, then carry
propagation took place after the second access. The clock value is reconstructed by concate-
nating the values read by the first and second access. If it is a zero, ther, carry propagation
took place before the second access. The clock value is reconstructed by concatenating the
values read by the third and second access.

Up to this point the discussion has only considered the case where all the bits of the clock

counter can be uniquely addressed by two processor accesses. There are also situations
where more than two accesses are needed. Consider, for example, processor access to a

64-bit clock counter through a 16-bit access path. This requires four processor accesses to
address uniquely all the clock counter bits.

Fortunately, cases involving more than two accesses to address uniquely all the clock
counter bits can be partitioned into a nested hierarchy of cases where each member of the
hierarchy involves direct access to the most-significant bits and atomic access of the next
lower member of the hierarchy. For the 16-bit access path to the 64-bit clock counter, the top

of the hierarchy consists of direct access of the 16 most-significant bits and atomic access of
the remaining 48 bits. The processor first reads the most-significant 16 bits, then, atomically
through a series of instructions, the least-significant 48 bits, and finally, the most-significant
16-bits again. It compares the values returned by the first and third accesses of the most-
significant bits and acts accordingly as described previously.

Let the bit positions of the 64-bit clock counter example be enumerated from 0 for the
least-significant bit position to 63 for the most-significant bit position as shown in figure 8.
Then this atomic read of the 64-bit clock counter can be summarized by the following macro

definition:

H 64 BITS

-16 BITS----16 BITS-4--16 BITS---+--16 BITS---{

MOST-SIGNIFICANT BIT

Figure 8. Sixteen-bit access to 64-bit register notation.
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atomic read bits 63-0 read bits 63-48
atomic read bits 47-0

read bits 63-48 again
compare bit 63-48 read values
reconstruct bits 63-0

Using the same approach, atomic read of the least-significant 48 bits of the clock counter, a

component of the macro definition above, can be summarized as follows:

atomic read bits 47-0 = read bits 47-32
atomic read bits 31-0

read bits 47-32 again

compare bit 47-32 read values
reconstruct bits 47-0

Similarly, atomic read of the least-significant 32 bits of the clock counter, a component of
the second macro definition, can be summarized as follows:

atomic read bits 32-0 = read bits 31-16
read bits 15-0

read bits 31-16 again
compare bit 31-15 read values
reconstruct bits 31-0

Atomic read of the entire 64-bit clock counter, after macro substitution, is defined as
follows:

atomic read bits 63-0 = read bits 63-48
read bits 47-32

read bits 31-16
read bits 15-0

read bits 31-16 again

compare bit 31-16 read values
reconstruct bits 31-0

read bits 47-32 again
compare bit 47-32 read values
reconstruct bits 47-0

read bits 83-47 again
compare bit 63-48 read values
reconstruct bits 63-0

The entire access is atomic if all the comparisons result in equality. Finally, the comparisons
are delayed so that the reads can be executed as close to one another as possible.
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atomic read bits 63-0 = read bits 63-48

read bits 47-32

read bits 31-16
read bits 15-0

read bits 31-16 again
read bits 47-32 again

read bits 83-47 again
compare bit 31-16 read values
reconstruct bits 31-0

compare bit 47-32 read values
reconstruct bits 47-0

compare bit 63-48 read values
reconstruct bits 63-0

Note that the read accesses go from the most-significant bits to the least-significant bits
sequentially, and then back again to the most-significant bits sequentially. This approach
was discovered by Lamport [61]. It is a special case of a general approach for implementing
single-writer, multiple-reader shared variables among independent processors without lock-
ing [621. The clock increment hardware is the writer; the one or more processors accessing
the clock counter are the readers. The approach does not work for atomic write access.

2.4. RATE ADJUSTMENT RELOAD REGISTER ATOMIC ACCESS

Another area where atomic access is a concern is the rate adjustment reload register of
the periodic phase modification method. Processor write access must be atomic when the
rate adjustment reload register is wider than the processor access path to it. Figure 9 shows
an example of the consequences of a processor write access that is not atomic. The proces-
sor needs two accesses, one to the most-significant half and one to the least-significant half,
to write the entire contents of rate adjustment reload register. The clock copies the rate

adjustment reload count from the rate adjustment reload register to the rate adjustment
counter independently of the processor. When this occurs between the time that the proces-
sor writes the most-significant half and the time that the processor writes the least-
significant half, the rate adjustment counter copies an invalid rate adjustment reload count.
It is invalid because it is a mix of portions from two different rate adjustment reload counts.

[61] See Leslie Lamport, "Concurrent Reading and Writing of Clocks," ACM Transactions on Computer
Systems, v. 8, n. 4, Nov. 1990, pp. 305-310.

[621 See Leslie Lamport, "Concurrent Reading and Writing," Communications of the ACM, v. 20, n. 11,
Nov. 1977, pp. 806-811. Also see textbook by Mamoru Maekawa, Arthur E. Oldehoeft, and Rodney R.
Oldehoeft, Operating Systems: Advanced Concepts, Benjamin/Cummings Publ., Menlo Park, CA, 1987,
pp. 34-37.
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64 BITS

32 BITS B-1- 32 BITS

ORIGINAL CONTENTS OF I
RATE ADJUSTMENT RELOAD 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4
REGISTER

DESIRED CONTENTS OF
RATE ADJUSTMENT RELOAD 0000000OFF EE DDICC
REGISTER

PROCESSOR WRITES
MOST-SIGNIFICANT HALF OF 0 000000000000004
RATE ADJUSTMENT RELOAD
REGISTER [I
RATE ADJUSTMENT COUNTER
COPIES BOTH HALVES OF 0 0 0 0 0 0 0 0 0 0 0 0
RATE ADJUSTMENT RELOAD O_REGISTER

PROCESSOR WRITES
LEAST-SIGNIFICANT HALF OF [o000000 I cc
RATE ADJUSTMENT RELOAD
REGISTER

Figure 9. Rate adjustment reload register atomic write access problem.

The error can be large, as the example illustrates. The problem exists regardless of which
half of the rate adjustment reload register the processor writes first.

The simplest way to provide atomic processor access to the rate adjustment reload regis-
ter is to disable phase counter modified cycles during processor access. The phase counter
modified cycle disable mode is already required to handle infinite rate adjustment periods
[63]. This solution requires no additional hardware.

2.5. VALUE-RATE ADJUSTMENT ALGORITHM

The value-rate adjustment algorithm is a local realtime clock synchronization algorithm
that uses value adjustment to correct the value error since the last adjustment and rate
adjustment in an attempt to prevent accumulation of any further value error at the next
adjustment. It is suitable for applications where the rate of change of the realtime clock rate is
small. Realtime clocks driven by crystal oscillators have this behavior, except perhaps for

1631 See Wilcox, NOSC TR 1400, pp. 15-16.
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the first few seconds after power is applied when the crystal oscillator temperature is chang-
ing rapidly [641.

Figure 10 shows the value adjustment portion of the value-rate adjustment algorithm in

terms of synchronization error versus time. The first adjustment, el, simply cancels the
value error, El, derived from the samples of the first strobe. It assumes that the clocks are
incrementing at the same rate. It is seldom the case that they are actually incrementing at the
same rate, but that assumption is the best that can be done given samples from only one
strobe [651.

Let Sj and Mj be the sample values of the local and master clocks, respectively, captured
by strobe j. Let T be the current local clock value. Sometime after the first strobe, the value
of T is replaced with its new value given by the equation

Tl = T-E 1 = T-(Si-M 1 )

The value of M1 is saved for use by the next iteration.

SYNCHRONIZATION
ERROR

SLOPE IS FLAT AND
VALUE ERROR IS ZERO

WHEN REALTIME
CLOCK OSCILLATORS

ARE STABLE

e2 =-Ee3 E32 Tl
el = - ,Ht -tT

REALT, t 72 t2 T3  6 TIME

FIRST FIRST SECOND SECOND THIRD THIRD
STROBE ADJUST STROBE ADJUST STROBE ADJUST

t
START RATE

ADJUST

Figure 10. Value-rate adjustment algorithm.

[64] See Wilcox, NOSC TR 1400, pp. 30-32.

[65] See Wilcox, NOSC TR 1400, p. 6.
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Once the sample values from the second strobe become available, the rate as well as the
value can be adjusted. The second value adjustment, e2, includes compensation for the rate
error. It is given by the equation

2  =- r 2 (T ) = E t -T S 2 -M2 ) - -

The rate adjustment after the second strobe is given by the equation

R2 - E2 S2 - M2

T2 - T, M2 -M1

The values of T 2 , R 2, and M 2 are saved for use by the next iteration.

The third adjustment, and all adjustments that follow, have the same form. The value
adjustment equation is

Tj= -Ej_ -__ _S - 5 Mi)(S TjJ1)rj

Ti =j forj>2 j -j

and the rate adjustment equation is

Ej 1 Si- Mi for j> 2gj = =j- R I -g _l-

The values of Tj, Rj, and Mj are saved for use by the next iteration.

For the periodic phase modification method employing k phases in a normal phase
counter cycle, the rate adjustment reload register value is the absolute value of x, where x is
given by the equations

X1 = 0

1 M2 -M1
X2 -

k R 2  k ( S 2 -M 2 )
_ 1 1

xi = I for j > 2k Rj  1 k( Sj-Mj )

Xj-1I Mj - Mj-1I

If x is negative, then the local clock is running too fast so long modified phase counter cycles
are periodically inserted. Otherwise short modified phase counter cycles are periodically
inserted.
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The evaluation of value adjustment equations requires processor execution time. Since
the realtime clock is advancing while the processor is performing the computation, the time
between reading the realtime clock value, T, and replacing it with the updated value, T,

should be minimized. This can be accomplished by rewriting the equations in an equivalent
form that performs as much of the computation as possible before reading T-. Processor
execution time cannot be eliminated entirely. What remains can be compensated by adding
a processor execution time correction term, p, to each equation.

rl = r- (Si-Mi) +p1

T2 = r (S2-Ml) + M1 $S2-11 + P2I'M-M1 2M

Ti, = T(M -i + TpJ ( j M )+ p for j >2(S -'j-1)l sj - Pj-

Interrupts, and other forms of processor preemption, must be disabled between the time that
the realtime clock is read and the time that it is updated so that the additional term is a
constant.

It is also important that the arithmetic instructions employed for the equations have
sufficient bits to avoid overflow and truncation problems. Typically this means supporting
some form of 64-bit arithmetic. Floating-point instructions may be used where there are no
significant instruction execution time data-dependencies affecting the constant p.

Value-rate adjustment avoids the stability problems associated with pure rate adjustment
[66]. It also has the advantage of being relatively easy to understand. The disadvantage of
value-rate adjustment is that its value adjustment component can make sudden changes in
the clock value during periods of rapid change in the clock rate.

[66] See Wilcox, NOSC TR 1400, pp. 36-37.
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3.0 REALTIME CLOCK HARDWARE MINIMIZATION

This section presents techniques for minimizing the hardware required to implement the
adjustable-rate realtime clock [67]. The periodic phase modification implementation
method is assumed.

3.1. ELIMINATING THE CLOCK COUNTER LOAD FUNCTION

The hardware required to implement the adjustable rate realtime clock can be reduced
by avoiding implementation of functions easily implemented in software. One such function
is software initialization of the hardware clock value. If the hardware clock value is not
initialized, its value will differ from the value desired by the software by some differential
constant. Instead of initializing the hardware clock value, the software determines the value
of the constant. The constant is computed by subtracting the actual hardware clock value
from the desired software clock value for the same moment in physical time. Once the value
of the constant is known, future readings of the hardware clock value can be translated in
software by adding this constant to the hardware clock value.

Eliminating the need to load a particular value into a clock counter opens opportunities
for implementing the clock counter using fewer, simpler, and smaller integrated circuit
components. These are possible because integrated circuit package pins used for counter
load data inputs on other counter integrated circuits can be reassigned as counter data out-
puts on counters without load data inputs. The 74LS393 [68] and the faster 74F393 [69], for
example, implement an 8-bit binary ripple [70] counter within a single 14-pin package. The
slower 74HC4040 [71] offers even higher density with a 12-bit binary ripple counter within a
16-pin package.

Figure 11 shows a block diagram of a clock counter with attached output and sample
registers. The output register is controlled by the processor read logic. It supports

[671 The first adjustable rate realtime clock designed by the author employed the Am2942 integrated
circuits as the central element. For Am2942 data, see Advanced Micro Devices, Bipolar Microprocessor
Logic and Interface Data Book, 1985. The Am2942 appeared to consolidate several clock functional
components into a single package. For assignment of Am2942 internal components, see Wilcox, NOSC
TR 1400, pp. 17-19. Upon completion, the design was found to require far more interface and control
logic than expected. This motivated the present discussion. The problem was not so much the Am2942 as
it was separating the functionality that requires hardware implementation from that that does not.
[68] See 74LS393 in Motorola, FAST and LS TTL Data, 1989; Signetics, TTL Data Manual, 1986, pp.
5-550 - 5-553; Texas Instruments, The TTL Data Book Volume 2, 1985.
[69] See 74F393 in Signetics, FAST Logic Data Handbook, 1989, pp. 6-422 - 6-426.
[70] Ripple counters have no carry output. Thus the worst case delay from the triggering edge of the clock
input on the least-significant integrated circuit to the stable state of the most-significant output on the
most-significant integrated circuit may be quite long. For a 32-bit counter, the delay is approx. 160 ns using
the 74F393, approx. 240 ns using the 74LS393, and approx. 1 pts using the 74HC4040.

[71] See 74HC4040 in Motorola, High-Speed CMOS Logic Data, 1989; Signetics, High-Speed CMOS
Logic Family Data Handbook, 1991, pp. 805-809; Texas Instruments, High-Speed CMOS Logic Data
Book, 1987.
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74LS374 74LS374174LS374174LS3741 74LS374 74LS374174LS374]74LS3741

Figure 11. Common clock counter implementation.

resynchronization of the clock counter data transfer when the timing of the clock counter
does not match the timing of the processor read, a situation frequently encountered in prac-
tical designs. The output register isolates the variation in the delay of the individual ripple
counter outputs from the prncessor bus. The output register can also serve as a read save
register for atomic access of the clock counter value by the processor when the access path
from the processor is narrower than the width of the clock counter [721. The sample register
is controlled by the strobe detector logic. The three-state enables of the output and sample
registers are controlled by the processor address decoder logic.

The number of integrated circuits can be reduced still further by using the 74LS590
integrated circuit [73]. Figure 12 shows a block diagram of the 74LS590. It consists of an
8-bit counter feeding an 8-bit register. The counter clock input is independent of the register
clock input. As shown in figure 13, one set of 74LS590 integrated circuits implements the
clock counter with output register and another set of 74LS590 integrated circuits implements
the clock counter with sample register. The two sets of 74LS590 integrated circuits are
forced to maintain the same internal counter value by ensuring that they are always cleared
or clocked at the same time and in the same way.

3.2. REDUCING THE SAMPLE REGISTER AND CLOCK COUNTER WIDTH

Another way to reduce hardware through the use of software is to support in the hard-
ware sample register only those least-significant sample value bits that cannot be deduced
by the software reading the current clock value after the sample has been taken.

[72] For a discussion of the various atomic access methods, see Wilcox, NOSC TR 1400, pp. 21-27. For a
good example of read and write save registers, see MC6840 in Motorola, 8-bit Microprocessor and
Peripheral Data, 1983, where the read and write save registers are designated as the LSB and MSB buffer
registers, respectively.
[73] See 74LS590 in Texas Instruments, The TTL Data Book Volume 2, 1985.
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COUNTER CLOCK _ 8-BIT COUNTER

CARRY OUTPUT V COUNTER CLOCK ENABLE

REGISTER CLOCK 8-BIT RE'ISTER

OUTPUT ENABLE THREE-STATEwI BUFFER

DATA OUTPUT

Figure 12. 74LS590 integrated circuit block diagram.

CLOCK COUNTER CLOCK COUNTER
WITH WITH

OUTPUT REGISTER SAMPLE REGISTER

74LS590 74LS590 74LS590 I74LS5901 74LS590 74LS590 i74LS590 74LS590

Figure 13. Replicated clock counter implementation.

The software reconstructs each full sample value before the synchronization algorithm

processes it. Reconstruction requires two steps. As shown in figure 14, the software first

reads and concatenates the most-significant clock value bits, whose numeric significance is

not supported by the hardware sample register, to the least-significant bits supplied by the
hardware sample register. It then corrects the most-significant bits to compensate for any

carry that may have propagated from the clock value least-significant bits to the clock value

most-significant bits between the time that the hardware sample register acquired the sam-
ple value and the time that the software read the clock value. Carry propagation is detected
by comparing the most-significant bit of the hardware sample register to the bit of the same
significance in the clock value. If the hardware sample register bit is one and the clock value
bit is zero, then a carry has propagated. The effect of the carry is removed by ,' .:rementing
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Figure 14. Software reconstruction of sample value.

the contents of the most-significant bits that were concatenated to the hardware sample

register value.

The minimum width of the hardware sample register is not determined by the maximum

expected synchronization error. That determines the minimum width of the full sample
value [74]. The minimum width of the hardware sample register is determined rather by the

maximum expected delay between the time that the hardware sample register acquires the

sample value and the time that the software reads the clock value. If the maximum delay can
be represented by an N-bit unsigned number, then the hardware sample register must con-
tain at least N+1 bits. The extra bit is needed to support the detection of carry propagation

described above.

A well-known method of reducing the width of a hardware clock counter implements the

most-significant clock counter bits in software. When the hardware clock counter overflows,

it generates an overflow interrupt informing the software to increment the software portion

of the cluck counter. The interrupt signal is derived from the hardware clock counter carry

output. To avoid atomic access problems, other processing using the full clock counter value
must be disabled during this update.

The hardware clock counter width, and the rate it increments, determine the period

between hardware clock overflow interrupts. Although often convenient, there is no require-
ment that the hardware sample register be as wide as the hardware clock counter as long as

its sampling requirements, described above, are met.

[74] See Wilcox, NO- " 1400, pp. 29-30.
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The role of the software translation constant, introduced in the previous section as a
means of eliminating the clock counter load function, can be extended to serve also as the
software portion of the clock counter.

3.3. REDUCING THE RATE ADJUSTMENT COUNTER WIDTH

In the periodic phase modification method, the purpose of the rate adjustment counter
and associated rate adjustment reload register is to control the periodic insertion or deletion
of a phase counter state in order to make minor adjustments in the realtime clock rate [75].
The rate adjustment counter counts downward toward zero. When it reaches zero, it signals
the phase counter that an additional phase state should be inserted or deleted from the
current cycle of the phase counter. All other cycles of the phase counter have the normal
number of phase states. After the count of zero, the rate adjustment counter loads itself with
the content of the rate adjustment reload register. It then counts downward repeating the
processes just described. The software controls the rate adjustment by specifying the content
of the rate adjustment reload register.

The period between modified phase cycles is called the rate adjustment period [76].
Letting k represent the number of phase states in a normal cycle of the phase counter, and
letting x represent the rate adjustment counter reload value, the rate adjustment period
consists of k times x phase counter phase state periods. The rate adjustment, R, produced by
the rate adjustment counter and reload register is defined by the equation

1
R =-

A perfectly synchronized realtime clock needs a rate adjustment of zero. By solving for x, it
is apparent that as the desired rate adjustment approaches zero, the required rate adjust-
ment counter reload value approaches infinity.

lim x lim 1
R-,0 R-0 k R

This intuitively makes sense since the smaller the desired rate adjustment, the longer the

period between insertion or deletion of a phase counter state. Unfortunately, infinity cannot
be represented numerically in a finite number of rate adjustment counter bits. The rate
adjustment counter is disabled when no rate adjustment is needed.

[75] See Wilcox, NOSC TR 1400 p. 15.

1761 See Wilcox, NOSC TR 1400 p. 14.
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Let N represent the number of rate adjustment counter bits. The minimum rate adjust-
ment supported by the counter, Rmin, is that associated with the maximum number that the
counter can represent.

1
m i = k (2 N 1)

For example, a 20-bit rate adjustment counter fed by a phase counter with three states per
normal cycle supports a minimum rate adjustment of 0.32 parts per million.

Varying the least-significant bits of the rate adjustment counter has little effect on the
rate adjustment. This can be seen by comparing the rate adjustment for a count of x to the
rate adjustment for a count of x + 8, where 8 is some small integer.

AR 1 1 6
k x k (x + 6) k (X2 + X6)

Realtime clock synchronization only requires minor rate adjustments. Minor rate adjust-
ments use relatively large values of x. Since x is large, and since its square appears in the
denominator, AR is very small. Using the example above of a 20-bit rate adjustment counter
fed by a phase counter with three states per normal cycle, the difference, AR, between the
rate adjustment for the largest value of x, which is 220 - 1, and the next largest value of x,
which is 220 - 2, is only 0.00003 parts per million. This is far less than the minimum rate
adjustment, Rmin, of 0.32 parts per million. Even for much smaller values of x, the value of
AR is quite small. For example, an x of 212 and an x + 8 of 212 + 1 gives a AR of 0.02 parts
per million.

The fact that the least-significant bits of x have little impact on the value of R for all but
the smallest values of x can be used to reduce the rate adjustment hardware. Only those
most-significant bits of the rate adjustment counter and reload register hardware that have a
significant impact need initialization. The least-significant bits of the rate adjustment
counter are implemented by a frequency-divider, since software access to their internal
content is unnecessary. The least-significant bits of the rate adjustment reload register are
eliminated entirely. Figure 15 shows the resulting block diagram.

Let L represent the number of least-significant bits eliminated from the rate adjustment
reload register. The rate adjustment reload register is consequently N - L bits wide. The
least-significant L bits of the rate adjustment counter are inaccessible by the software. But
since the most-significant N - L bits decrement only when the least-significant L bits pass
through zero, the software can assume that the least-significant L bits of the rate adjustment
counter reload value are zero for the purposes of rate adjustment calculations. Let m repre-
sent an arbitrary numeric value for the most-significant N - L bits of the rate adjustment
counter reload value. The minimum software-programmable difference between rate adjust-
ment counter reload values is
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Figure 15. Adjustable-rate realtime clock block diagram.

c6min = [(m+1) 2L + ] - [m2L + 0 2L

Substituting the value of 8 min into the equation for AR yields

AR 6rin -2L

k (x2 + X 6 min) k [x 2 + 2Lx]

With the least-significant L bits now zero, the value of of Rmin becomes

1 1Rmi n =1L)+0]- 1L
k [ (2 N-L) (2L)+0 ] k (2 N-

2L)

There is no point in providing any more rate adjustment accuracy through the inclusion
of software-programmable least-significant bits than that supported by the total width of the
rate adjustment counter. The two rate adjustment accuracies can be related as follows

AR = Rmiii

Figure 16 shows this relationship geometrically. Substituting for AR and Rmin yields

2L  1

k [ x 2  2L x k (2N - 2L)

x2 + 2L x - (2 N- 2 L) (2 L) = 0

Solving for positive x yields the minimum rate adjustment counter reload value that will give
the same rate adjustment accuracy as that associated with Rmin.

-_ 2 L-1 + J 2 N+ L 
- 3 "2 2L-2
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Figure 16. Geometric representation of rate adjustment.

Finally, the rate adjustment corresponding to this value of x, which is the maximum rate
adjustment that will give the same rate adjustment accuracy as that associated with Rmin, is
given by the equation

11
Rmax 1

k x k L1+ NL 32 )

Thus. given values for N, L, and k, one can determine the values for Rmin and Rmax.

The design problem is usually the reverse, that is, given Rmin and Rmax, select values for
N, L, and k. Rmin must be less than or equal to the rate adjustment accuracy required by the
application. Rmax must be larger than the worst-case drift specified for the crystal oscillator.
It must be larger because it must cancel not only the effects of the oscillator drift but also
correct minor errors in the clock value. Worst-case drift values commonly encountered in
crystal oscillator specifications are ±100 parts per million and ±25 parts per million.

Table I tabulates the values of k times Rmin and k times Rmax for common values of N and
L. The designer can use this table to find values of N and L that satisfy the inequalities for
Rmin and Rmax described above for a selected value of k. Consider, for example, the design of
a system containing a 5-megahertz microprocessor, an adjustable-rate realtime clock that
nominally increments every microsecond, and a common crystal oscillator. Use of a com-
mon crystal oscillator implies that k should be five. Assume, further, that the worst-case
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Table 1. Table of k Rmj, and k Rmax versus N and L.

Parts per million Parts per million

N L k x Rmin k x Rmax N L k x Rmin k x Rmax

16 0 15.2590 3906.2500 19 0 1.9074 1381.0679
16 1 15.2593 2769.8182 19 1 1.9074 977.5185
16 2 15.2597 1960.8294 19 2 1.9074 691.4909
16 3 15.2607 1388.8036 19 3 1.9074 489.2396
16 4 15.2625 984.3428 19 4 1.9074 346.2273
16 5 15.2662 698.3779 19 5 1.9075 245.1037
16 6 15.2737 496.2164 19 6 1.9076 173.6005
16 7 15.2886 353.3335 19 7 1.9078 123.0429
16 8 15.3186 252.3981 19 8 1.9083 87.2972

17 0 7.6295 2762.1359 20 0 0.9537 976.5625
17 1 7.6295 1956.9584 20 1 0.9537 691.0116
17 2 7.6296 1384.9091 20 2 0.9537 488.7593
17 3 7.6299 980.4147 20 3 0.9537 345.7455
17 4 7.6303 694.4018 20 4 0.9537 244.6198
17 5 7.6313 492.1714 20 5 0.9537 173.1136
17 6 7.6331 349.1890 20 6 0.9537 122.5518
17 7 7.6369 248.1082 20 7 0.9538 86.8002
17 8 7.6443 176.6668 20 8 0.9539 61.5214

18 0 3.8147 1953.1250 21 0 0.4768 690.5340
18 1 3.8147 1382.9819 21 1 0.4768 488.5200
18 2 3.8148 978.4792 21 2 0.4768 345.5058
18 3 3.8148 692.4545 21 3 0.4768 244.3796
18 4 3.8149 490.2073 21 4 0.4768 172.8727
18 5 3.8152 347.2009 21 5 0.4768 122.3099
18 6 3.8156 246.0857 21 6 0.4769 86.5568
18 7 3.8166 174.5945 21 7 0.4769 61.2759

18 8 3.8184 124.0541 21 8 0.4769 43.4001

drift of the crystal oscillator is ±100 parts per million and that a rate adjustment accuracy of
1 part per million is needed by the application. This means that Rmax must be larger than 100
parts per million, and Rmin must be less than or equal to 1 part per million. Multiplying by k,

k times Rmax must be larger than 500 parts per million, and k times Rmin must be less than or
equal to 5 parts per million. Referring to table 1, this can be accomplished by an N of 18 or
more with an L of 3 or less.

While table 1 gives a solution, it is not necessarily the optimal solution. As described
above, the values for Rmin listed in table 1 were computed assuming the maximum rate
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adjustment counter reload value that can be represented by an N-bit rate adjustment counter
with its least-significant L bits set to zero.

_1Rmin "- L

k (2N -
2L)

In the example above, the table entry for an N of 18 and an L of 3 was selected, in part, for
its k times Rmin value of 3.8148. Let RIo, represent the minimum rate adjustment actually
required by the application. In the example above, k times R1.o was 5 parts per million.
When k times R1., is larger than, rather than equal to, k times Rmin, which is almost always
the case, the value of x required to generate a rate adjustment of R1o is some number
smaller than the maximum number that can be represented.

Rlow  - Rmin

1 1
k x k (2N - 

2 L)

x < 2N
- 2L

The value of Rmax given that its accuracy must be the same as that for R1ow is computed as
follows

AR = Rlow

k Rlow

k [x2+ 2Lx ]

X2 + 2L X 11 -

Solving for positive x yields

x - 2L-1 + J 2-2 + 2L
x 2 2k Rl0 w

The value of k times Rmax is then
1 _1

k Rmax -
-2L-1 + 22L-2 + k2_-1o
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Returning to the example above, it is clear from the table that N must be 18 or more in
order to satisfy the requirement that k times Rmin be less than or equal to 5 parts per million.
The impact of L on k times Rmin is too small to change that. But L does have a significant
impact on k times Rmax. Therefore, it is advantageous to determine whether using k times
R1o,, rather than the k times Rmin of the table, permits L to be increased. Using the equation
above, an L of 4 gives

k Rm. = 1 - 561.5229 10- 6

23 + 2+5 10- 6

This new value of k times Rmax, computed from the actual k times RI., rather than the k
times Rmin provided by the table, is larger than the required 500 parts per million. Therefore
an N of 18 or more and an L of 4 or less is a valid solution. Checking an L of 5 gives a value
for k times Rmax of 397.7926 parts per million, which being smaller than 500 parts per
million, is not a valid solution. The final result, then, is an N of 18 or more and an L of 4 or
less.

The width of the rate adjustment reload register and the initialized portion of the rate
adjustment counter, N - L, can also be reduced by increasing k, the number of states in a
normal cycle of the phase countc:r This is attractive when the width does not neatly fit within
the available hardware compc. ent partitioning. It is advantageous, for example, to replace a
17-bit register with a 16-bit register since hardware components are usually partitioned into
multiples of 4 or 8 bits. The tradeoff is usually a good one because phase counter logic is
relatively simple. Changing the value of k does, however, change the relationship between
the oscillator frequency and the frequency at which the clock counter nominally increments.

Sometimes the rate adjustment counter and its rate adjustment reload register can be
eliminated entirely by scheduling the modified phase counter cycles by using the time event
services provided by the processor operating system instead. This is feasible when the appli-
cation can tolerate interrupts at the minimum expected rate adjustment period.
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3.4. USING MICROPROCESSOR PERIPHERAL TIMER INTEGRATED CIRCUITS

Many integrated circuit vendors supply peripheral timer integrated circuits as members
of their microprocessor integrated circuit families [77]. These integrated circuits typically
provide two or three counters with associated save registers to permit atomic access of their
16-bit counter values through their 8-bit processor bus port. The save registers sometimes
support an automatic counter reload function for repeating counter sequences. These inte-
grated circuits also typically provide an independent external counter clock input, external
counter enable or trigger input, and discrete counter output for each respective counter. The
counters are controlled through the loading of a mode register. The mode register typically
selects, for each respective counter, whether the counter counts up or down, whether the
count is binary or binary coded decimal, the events initiating and terminating counting, and
the operation of the discrete counter output.

When the width of the clock counter and sample register can be limited to 16 bits, it
would seem that these peripheral timer integrated circuits offer an opportunity to implement
the clock counter with output register and the clock counter with sample register within a
single integrated circuit package. Closer scrutiny, however, reveals that the modes provided
by these integrated circuits are not well-suited to that approach. They do not permit the clock
counter associated with the sample register to be sampled by an external strobe without also
stopping the clock counter itself. Once the clock counter is stopped, there is no way to get it
started again such that its value will match the value of the clock counter associated with the
output register without stopping it as well. If both clock counters are stopped, then synchro-
nization is at the mercy of software instruction execution timing.

A better approach for peripheral timer integrated circuits defines the least-significant
bits of the clock value as the arithmetic sum of two of its internal counters. The external
clock enable inputs for the two counters are wired such that only one counter is counting at
any given time. The strobe samples the clock by toggling the selection of the counter current-
ly counting. The strobe also generates a strobe interrupt to activate the rate adjustment
algorithm as usual. Included in the processing for that interrupt is memory storage of the
value of the clock that is currently not counting. The software recovers the least-significant
bits of the sample value by adding the value stored for the current strobe interrupt to the
value stored for the previous strobe interrupt.

[77] For example, see Z8036/8536 in Advanced Micro Devices, MOS Microprocessors and Peripherals
Data Book, 1985; 8253 and 82C54 in Advanced Micro Devices, Military MOS Microprocessors and
Peripherals, 1988; 8253, 8254, and 82C54 in Intel, Peripheral Components, 1991; MC6840 in Motorola,
8-bit Microprocessor and Peripheral Data, 1983; DP8570A in National Semiconductor, Real Time Clock
Handbook, 1989. The National Semiconductor DP8570A also supports time of day, day of week, and date
directly in hardware. For exceptions to the typical, see Motorola, MC68230 Parallel InterfacelTimer
(PI/T), 1983, which has one 24-bit counter, and Motorola, MC68901 Multi-Function Peripheral, 1984,
which has four 8-bit counters. The Advanced Micro Devices Am9513A, with its five 16-bit counters and
16-bit bus, is presented at the end of this section.
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Since the approach employs two internal hardware counters, and since the value in either
counter is independent of the other, there are two sources of hardware counter overflow
interrupts. Only one hardware counter is counting at any given time. Therefore, the average
rate of overflow interrupt occurrence is the same as if there were only one hardware counter
always counting. There only needs to be one software extension of the hardware counter
value to provide the most-significant bits of the clock value. The processing in response to
either internal hardware counter overflow interrupt increments the software counter. There-
fore, the overflow interrupt signals from the two internal hardware counters can be gated
together to form a single overflow interrupt signal.

Table 2 shows the computation of the full clock value. Each row represents the state after
one cycle of the phase counter. The hardware counter values are shown in the first two
columns. Initially Counter A is counting and Counter B is not. The two counter values are
treated as 16-bit unsigned numbers. When added, they produce a 17-bit unsigned sum as
shown in the third column. When Counter A overflows, it generates the counter overflow
interrupt, which directs the software to increment the software counter. The software count-
er is incorporated within the translation constant shown in the fourth column. Thus, incre-
menting the software counter means incrementing from the least-significant bit that does not
have a corresponding hardware counter bit of the same significance. The full clock value, as
seen by the user, is the sum of the two counters and the translation constant as shown in the
fifth column.

Table 2. Peripheral timer utilization example.

Counter Counter Sum of Translation Full Clock Interrupt
A Value B Value Counters Constant Value Received

FFF9 0004 OFFFD 770001 77FFFE
FFFA 0004 OFFFE 770001 77FFFF

FFFB 0004 OFFFF 770001 780000

FFFC 0004 10000 770001 780001

FFFD 0004 10001 770001 780002

FFFE 0004 10002 770001 780003

FFFF 0004 10003 770001 780004 Overflow

0000 0004 00004 - 780001 780005

0001 0004 00005 780001 780006

0002 0004 00006 780001 780007 Strobe
0002 - 0005 00007 780001 780008

0002 0006 00008 780001 780009
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Table 2 also shows the toggle between running counters in response to the strobe. The
strobe causes Counter A to stop counting and Counter B to start counting. The strobe has no
effect on the normal advance of the full clock value seen in the fifth column. The strobe
interrupt, among other things, stores the value of the now quiescent Counter A in memory
for future use. The value stored is 0002. It retrieves from memory the value of Counter B
that was stored on the previous strobe interrupt. That value is 0004. It uses the previously
stored value of Counter B, rather than the current value of Counter B because Counter B is
running and may advance to a different value by the time that the strobe interrupt is pro-
cessed. The sample value is the sum of the value stored for Counter A, the value stored for
Counter B, and the value of the translation constant at the time that the strobe occurred. In
other words, the sample value is 0002 + 0004 + 780001 = 780007.

Unfortunately, the translation constant available to the strobe interrupt software is not
necessarily the translation constant at the time that the strobe occurred. The two may differ if
one or more overflow interrupts were processed between the occurrence of the strobe and
the execution of the strobe interrupt software. A simple way to solve this problem is to
assign a higher interrupt priority to the strobe interrupt than to the overflow interrupt so that
the strobe interrupt will always be processed first. Another solution is to have an additional
software counter, called the overflow adjustment counter, to keep track of the numbcr of
overflow corrections to the translation constant since the occurrence of the strobe. The over-
flow adjustment counter is incremented by the overflow interrupt software. It is read and
then cleared by the strobe interrupt software. The strobe interrupt software uses its value to
convert the current translation constant value into the value of the translation constant at the
time that the strobe occurred.

A common application of the realtime clock is the measurement of time intervals
between two events. The clock value for the first event is subtracted from the clock value for
the second event to determine the time between events. The situation may arise where the
internal hardware clock counter running when the first event time is obtained is not the same
one running when the second event time is obtained. Most microprocessor peripheral timer
integrated circuits do not provide the ability to read both internal hardware clock counters
simultaneously. Time elapses between the reading of the first clock counter and the reading
of the second clock counter. The accuracy of the time interval measurement application is
therefore improved by having the software always read the running clock counter first,
rather than always reading a given clock counter first. This principle is shown in figure 17.
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A B STROBE A B
A RUNNING B RUNNING

INCORRECT TIME BETWEEN EVENTS
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A B STROBE B A
A RUNNING IB RUNNING

CORRECT TIME BETWEEN EVENTS

Figure 17. Peripheral timer time interval measurement.

3.5. USING THE Am9513A PERIPHERAL TIMER INTEGRATED CIRCUIT

As discussed in the previous section, the typical microprocessor peripheral timer inte-
grated circuits have many limitations. They limit the width of the hardware clock and hard-
ware sample values to 16 bits. They limit data bus access to 8 bits. They require external
logic to implement the phase counter and the toggle between hardware counter enables.
They require access of two hardware counters to compute the clock value instead of one.
They require storage of previous hardware counter values in memory to recover sample
values. Finally, they require software knowledge of which hardware counter is currently
running so that the proper hardware counter value stored in memory can be retrieved for the
recovery of the sample value and so that the measurement of the time between events can be
accurately computed. On the other hand, they greatly reduce the number of integrated cir-
cuits compared to the other implementations described above.

All these limitations are overcome by using a more flexible microprocessor peripheral
timer integrated circuit called the Am9513A [78]. The Am9513A provides five internal
16-bit counters. Two or more counters can be "concatenated" to form wider counters. The
data bus interface is selectable for either 8-bit or 16-bit access. Commands written to a
dedicated address permit the same operation to be applied to any selected set of counters
simultaneously.

[781 For Am9513A data, see Advanced Micro Devices, Military MOS Microprocessors and Peripherals,
1988; Advanced Micro Devices, Personal Computer Products: Processors, Coprocessors, Video, and
Mass Storage, 1989. For application and programming information, see Advanced Micro Devices,
Am953/Am9513A System Timing Controller Technical Manual, 1990.
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A suggested allocation of the five internal counters is given below. There are, of course,
many other alternatives.

Counters 1 and 2 are concatenated to form a 32-bit clock counter. This is the only clock
counter. There is no need to toggle between two clock counters. Counters 1 and 2 support the
least-significant and the most-significant bits, respectively. Counters 1 and 2, as opposed to
the other 16-bit counters, are selected because they are the only ones supporting the alarm

function. The alarm function compares the clock counter value to a preset value and gener-
ates a hardware output signal when there is a match. This signal is used as a alarm interrupt
so that the software can schedule time events. Counters 1 and 2 are programmed for "count
up concatenation with no gating" [79]. In this mode, the clock counter counts continuously.
The mode requires no external hardware.

Counters 3 and 4 are concatenated to form a 32-bit strobe delay counter. Counters 3 and
4 support the least-significant and the most-significant bits, respectively. The strobe delay

counter measures the elapsed time between reception of the hardware strobe signal from the
strobe detector to access of the strobe delay counter value by the software. To recover the
sample time, the software uses the "save" command to capture the values of the clock
counter and the strobe delay counter simultaneously. The sample value is computed by
subtracting the delay counter value from the clock counter value. Counters 3 and 4 are
programmed for "count up concatenation with edge gating" [801. In this mode, the strobe
delay counter starts counting upon receiving a hardware trigger from the strobe detector and
stops counting upon reaching the terminal count. The mode requires an external "D" flip-
flop, inverter, and three-input NAND gate.

The hardware output signal from Counter 4 can be used as a strobe watchdog timer [81]
interrupt signal. The watchdog timer time interval is selected by the initial value loaded into
the strobe delay counter before the strobe signal triggers the strobe delay counter. The
watchdog timer time interval value is the difference between the initial value and the termi-
nal count. When a non-zero initial delay counter value is used, this initial value must be
included in the computation that recovers the sample value since the strobe delay indicated
by the delay counter is offset by the initial value of the delay counter.

Counter 5 can be assigned the phase counter function. Counter 5 is selected, as opposed
to some other 16-bit counter, because it can then internally feed its phase counter output to
the source input of Counter 1. Counter 5 needs to feed the source input of Counter 3 also,
but this connection must be made externally. Counter 5 is programmed for the "frequency
shift keying" mode, designated mode "V." This mode uses a hardware input signal to select

[79] See Advanced Micro Devices, Am9513A/Am9513 System Timing Controller Technical Manual,
1990, Fig. 3-1.

[80] See Advanced Micro Devices, Am9513AIAm9513 System Timing Controller Technical Manual,
1990, Fig. 3-3.

[811 For strobe watchdog timer, see Wilcox, NOSC TR 1400, pp. 3-5.
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between two alternative periods for the counting sequence. The modified cycle signal is used
to select between the normal phase counter cycle period and the modified phase counter
cycle period. Since modified cycles occur infrequently, there is plenty of time for the soft-
ware to load either a long or short modified phase counter cycle period value between modi-
fied cycles.

Phase counters contain only a few bits and require very littie hardware to implement
[82]. It is therefore usually desirable to implement the phase counter externally and use
Counter 5 for some other purpose that makes better use of its 16-bit width.

Counter 5 is better employed as the rate adjustment counter. The counter supports both
the rate adjustment counter and its reload register functions. It is programmed for a count
down mode without gating. The Counter 5 source is either the divide-by-16 output or the
divide-by-10 output of the irternal Frequency Scaler [83].

Employing the notation of section 3.3., the number of states in a normal cycle of the
phase counter, k, times the minimum adjustment rate, Rm., for the divide-by-16 case is

1 _

k Rmin - 216. 24 - 0.9537" 10-6

and for the divide-by-10 case is

k Ri 1 = 1.5259 - 10- 6

k Rmin = 216.10

The relationship between RIO, and Rma. for the divide-by-16 case is

k Riax =
8 / 16

-8+ 64+ 1lo

and for the divide-by-10 case is

k Rma =1

-5 + 25+ 1-ow
k 10

For a phase counter with four states per normal phase cycle, the divide-by-16 case supports
adjustment rates up to 125 parts per million with a worst-case resolution of 1 part per

[821 For example, see the 2-bit phase counter in Wilcox, NOSC TR 1400 p. 17.

[831 See Advanced Micro Devices, Am9S3A/Am9S3 System Timing Controller Technical Mamual,
1990, Fig. 1-15.
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million, and the divide-by-lO case supports adjustment rates up to 112 parts per million with
a worst-case resolution of 0.5 parts per million. Since low-cost crystal oscillators are gener-
ally specified with an accuracy of plus or minus 100 parts per million or better, the sup-
ported range is adequate for typical applications.
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4.0 IEEE 802.5 STROBE DETECTOR HARDWARE

This section presents hardware implementation techniques for IEEE 802.5 local area
network realtime clock strobe detectors.

4.1. SYMBOL DECODING AND ALIGNMENT IMPLEMENTATION

The strobe detector for the Texas Instruments TMS380 integrated circuit family passive-
ly monitors the connection from the media ring interface to the local area network control-
ler. It only needs access to two wires, the receive data signal, designated RCVR, and the
receive data clock, designated RCLK. For the "first generation" TMS380 integrated circuit
family, RCVR is generated by the TMS38051 and RCLK is generated by the TMS38052. For
the "second generation" TMS380 integrated circuit family, both RCVR and RCLK are gen-
erated by the TMS38053.

RCVR is a TrL equivalent of the differential Manchester encoded 184] signal received
from the local area network media. RCVR should be sampled on the rising edge of RCLK
[851. RCLK has a one unit interval period. Its frequency is 8 megahertz for the 4-megahertz
bus and 32 megahertz for the 16-megahertz bus.

The information within a differential Manchester encoded signal is contained within the
signal level transitions, not within the signal level itself. An inverted differential Manchester
encoded signal has the same content as the original signal. The IEEE 802.5 differential
Manchester encoded input can be converted into a binary sequence where two unit-interval
levels represent each symbol. This conversion is accomplished with a flip-flop and an exclu-
sive-NOR gate [861, as shown in figure 18. The table gives the first and second unit-interval
values for the four types of IEEE 802.5 symbols assuming proper alignment of unit-interval
values into symbols. Without this alignment, it is impossible to distinguish between the first
and second unit intervals, and therefore impossible to uniquely decode the received input.

The alignment of unit interval values into symbols, and of symbols into octets, is deter-
mined from the unique coding of the protocol data unit starting delimiter field. The IEEE

1841 See IEEE 802.5-1989 sec 5.1, pp. 65-67.

1851 For RCVR and RCLK timing, see Texas Instruments, TMS380 Adapter Chipset User's Guide, Revi-
sion D, July 1986, p. 4-124, TMS38020 data sheet p. -- 52. Also see Texas Instruments, TMS380C16 &
TMS38053 Data Sheet Packet: Preliminary Information, Aug. 1990, p. 33.

[861 From the linear digital circuit point of view, the circuit "integrates" the "differential" signal. The
exclusive-NOR was selected over the exclusive-OR, so that the resulting representation of the IEEE 802.5
I and 0 symbols have active-high I and 0 as the first unit-interval level, respectively.

49



FIRST SECOND
IEEE 802.5 UNIT-INTERVAL UNIT-INTERVAL

RCRD QSYMBOL LEVEL LEVEL
RCVR 1 HIGH LOW

RCLK 0 LOW LOW

J HIGH HIGH

K LOW HIGH

Figure 18. Differential Manchester decoder.

802.5 starting delimiter field is encoded as the symbol sequence "JKOJKOOO" [871. If this
sequence is misaligned by one unit interval, it decodes as "xl 1K1 100," where "x" is any
of the four possible symbols. The actual "x" depends on what preceded the starting delimit-
er symbol sequence. Since there is no "x" that produces a valid IEEE 802.5 symbol
sequence, the misaligned sequence is ignored. Once a properly aligned starting delimiter is
recognized, everything that follows in the same protocol data unit is assumed to have the
same symbol and octet alignment.

It is not necessary to search for a match on all eight symbols of the starting delimiter. The
starting delimiter is uniquely identified by the first four symbols "JKOJ." The differential
Manchester decoder presents these four symbols as a sequence of eight binary unit-interval
values. Furthermore, it is not necessary to examine all eight unit-interval values. Consider
the alternative symbol sequence "JKKJ." It differs from the sought sequence "JKOJ" only
in that it has a different decoded binary unit-interval value in the second unit-interval of the
third symbol. Since neither "JKKJ" nor its one unit interval misalignment are valid IEEE
802.5 sequences, it is also not necessary to check the second unit-interval of the third sym-
bol. Minimizing the number of unit-interval values checked can simplify hardware. On the
other hand, seeking a match of the full starting delimiter offers a degree of fault tolerance.

It is sometimes advantageous to partition symbol alignment into a separate sequential
state machine. A symbol alignment state machine can be built by noting that the only valid
two-symbol sequence involving the J and K symbols is "JK" [88]. The state machine con-
tains a shift register that captures the four most-recent sequential unit interval values. When

[871 See IEEE 802.5-1989 sec 3.2.1, p. 24.

[881 IEEE 802.5-1989, sec 5.1, p. 66, states: "To avoid an accumulating dc component, non-data sym-
bols are normally transmitted as a pair of J and K symbols. (By its nature, a K symbol is opposite to the
polarity of the preceding symbol.)" The only two examples given for non-data symbols are the starting
delimiter, in sec. 3.2.1, p. 24, and the ending delimiter, in sec. 3.2.7, p. 31. Thus it is not clear what an
abnormal use of the non-data symbols would be other than an error.
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the sequence equivalent to "JK" appears, the symbol clock is forced to the proper symbol
alignment.

An example of a schematic for such a circuit is shown in figure 19 and figure 20. It
converts the raw local area network signal into a stream of symbols clocked at the symbol
clock rate. The differential Manchester decoder is incorporated within the logic. The circuit
is suitable for programmable array logic implementation using a PAL16R8. Its inputs are
RCVR and RCLK from either the Texas Instruments TMS38051 and TMS38052, or from the
TMS38053. Its outputs are SUI and SU2, which are the first and second symbol unit interval
values, respectively, and SCLK, which is the symbol clock. Figure 21 shows a timing dia-
gram for the circuit. The symbol outputs SU1 and SU2 are stable during the rising edge of
the symbol clock SCLK. The propagation delay through the circuit, measured from the
rising edge of RCLK for the first unit interval value of a symbol to the rising edge of SCLK
for the same symbol, is four unit intervals. This propagation delay is not dependent on
previous SCLK alignment.

RCVR D Q DLYO

RCLK Ct Q

DLYORCVR - _ .,

DLYI D Q DLY1

DL1D 
Q DLY2

RESET

DLY2 6 j

DL2D Q DLY3

RESET

Figure 19. IEEE 802.5 symbol alignment circuit schematic (sheet 1).
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RCLK

RCVR
0 0 J K 0 J K 0 0 0

MISALIGNMENT
CORRECTED

+
SCLK

Sul I

SU2
0 0 0 J K 0 J K 0

Figure 21. IEEE 802.5 symbol alignment circuit timing diagram.

The symbol alignment circuit has three advantages. First, the programmable array logic
implementation of the circuit only places a single unit load on the RCVR and RCLK outputs
from the TMS380 integrated circuits. The symbol clock, SCLK, which the circuit generates,

clocks everything else in the strobe detector. Second, it reduces the operating frequency of
the remainder of the strobe detector state machine. This is important for the 16-megahertz
bus because the remainder of the strobe detector can operate at 16 megahertz rather than 32
megahertz. More low-power logic families support 16 megahertz than support 32 mega-
hertz. Finally, it permits data bits to be recovered from the symbols 0 and 1 at the data bit
rate directly from SU and SCLK.

4.2. PROGRAMMABLE CONTROLLER IMPLEMENTATION

The bulk of the strobe detector state machine can be constructed using a programmable
controller integrated circuit such as the Am29CPL154 [89]. The Am29CPL154 does not
cycle fast enough to receive a 32-megahertz RCLK directly. It can, however, receive the
16-megahertz output from the symbol alignment circuit described above.

Each clock cycle of the symbol alignment circuit potentially presents the programmable
controller with any of four possible symbols. Assuming normal operation, nearly all symbols
are either the symbols 1 or 0. The J and K symbols occur only during the starting and ending
delimiters, and as noted previously, only starting delimiters are of interest. Since it is easier
to program two-way branches rather than four-way branches in firmware, it is advantageous

[891 See 29CPL154-25 in Advanced Micro Devices, PAL Device Data Rook: Bipolar and CMOS, 1990,
pp. 3-98 - 3-132. For tutorial programming examples, see Advanced Micro Devices, Am29PL100 Field
Programmable Controllers: Handbook, 1988.
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to use external hardware to detect any unexpected J and K symbols and let the program-
mable controller concentrate on two-way branching in response to 1 and 0 symbols. Four-
way branching is then limited to decoding the starting delimiter. As seen from the table in
figure 18, the two classes of symbols are easily distinguished by the SU2 output of the
symbol alignment circuit. The SU2 output is high for the J and K symbols and low for the 1
and 0 symbols.

The circuit-generating SU2, shown at the bottom of figure 20, can be replaced by one
that supports detection of unexpected J and K symbols. The modified circuit, shown in
figure 22, has two modes of operation. When the SU2HD input is low, the new circuit
produces the same SU2 output waveform as the original circuit. When the SU2HD input is
high, the behavior is the same except that once the SU2 output goes high, it remains high
[90]. The programmable controller firmware sets the SU2HD input high when SU2 is low
and no J or K symbols are expected. Later, at its convenience, it tests the SU2 output to
determine if it is still low. If it is still low, then the SU2 output never went high, so no J or K
symbols were received. If it is not still low, then at least one symbol received sometime while
the SU2HD input was high was incorrectly interpreted by the programmable controller firm-
ware as a 1 or 0 symbol when, in fact, it was a J or K symbol. Knowledge of the location of
the incorrectly interpreted symbol and whether it is a J or a K symbol is lost. This is not a
problem, however, since an unexpected J or K symbol, regardless of its location or value,
are a signal to the firmware to abort strobe recognition.

SU2
SCLK
DLY2
SCLK -- j

SU2HD- q - D Q SU2

SU2

DLY2 RK-Ct Q

RESET -- [

Figure 22. IEEE 802.5 symbol alignment circuit
schematic (sheet 2 modification).

[90] As was the case for its predecessor, the new circuit gives an incorrect value for SU2 during symbol
misalignment. This is not a problem because the programmable controller firmware does not use the
SU2HD input high mode just prior to the starting delimiter where symbol alignment correction takes place.
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The programmable controller interfaces to external memory to support the strobe
address and strobe label registers. If there is no requirement for the strobe address to be
programmable by the processor, the strobe address register memory is unnecessary. In that
case, the predefined strobe address is embedded within the programmable controller firm-
ware. Assuming that the strobe address is programmable, the strobe address register
memory must be writeable by the processor and readable by the programmable controller.
The strobe label register memory, on the other hand, must be readable by the processor and
writeable by the programmable controller.

Atomic access is not a major concern for this memory. The strobe address register
memory is only written during strobe detector initialization and read during strobe detector
operation. The strobe label register memory is only written when a strobe is detected and
read after the strobe is detected. There is also no conflict when the strobe address and strobe
label registers reside in the same memory component since they are not addressed simulta-
neously by either the programmable controller or by the processor.

Storage of the strobe label requires serial-to-parallel conversion of the local area network
input for storage in the strobe label register memory. One could use a hardware shift regis-
ter, but that is unnecessary since the same function can be performed by the programmable
controller. The programmable controller firmware, illustrated by figure 23, collects all the
bits except the last bit needed for a parallel load of the memory. The information defined by
the values of these bits, in distinction from the values themselves, is captured within the
particular firmware address assumed by the program counter. The symbol alignment circuit
supplies the last bit directly, as shown by figure 24. The memory load takes place in the
same cycle that the last bit becomes available.

READ AND TEST
FIRST BIT

READ AND TEST 0
SECOND BIT

UPDATE ADDRESS

READ AND TEST 0
THIRD BIT1

OUTPUT THREE BITS 0 0 0
HARDWARE INSERTS

FOURTH BIT ,
WRITE MEMORY 000 001 010 011 100 101 110 111

Figure 23. Programmable controller serial-to-parallel write firmware.
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SYMBOL ALIGNMENT
CIRCUIT

SROGRAMMABLE
CONTROLLER

STROBE LABELREGISTER MEMORY

Figure 24. Programmable controller
serial-to-parallel write hardware.

The number of firmware instruction locations required increases geometrically with the
number of bits converted from serial to parallel. Assuming the technique described above,
15 firmware locations are required for 4-bit conversion and 255 firmware locations are
required for 8-bit conversion. Obviously, 4-bit conversion is far less costly than 8-bit conver-
sion. This motivates the use of memory components capable of being loaded in parallel 4
bits at a time.

Comparison of the strobe address with the address maintained in the strobe address
regi ter memory is more complex. As Ihown in figure 2 i, the first 2 bits received from the
local area network are mapped into unique firmware memory addresses. This is the same
approach as taken for the strobe label except that 2 bits, rather than 3, are mapped. The
values of the first 2 bits, collected by the firmware, are sent to a 3-bit hardware identity
comparator at the same time that the third bit emerges from the symbol alignment circuit.
This is illustrated in figure 26. The identity comparator compares the first 3 bits received
against the values of the corresponding bits in the strobe address register memory. It sends
the comparison result back to the firmware at the same time that the firmware receives the
fourth bit from the symbol alignment circuit. The firmware makes the final comparison
using an eight-way branch. The inputs to the branch are the match output from the identity
comparator, the value of the fourth bit received from the symbol alignment circuit, and the
value of the corresponding fourth bit from the strobe address register memory. To provide
adequate flexibility in mapping the eight-way branch needed for each 4-bit comparison into
firmware instruction address space, the unused test inputs of the programmable controller
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READ AND TEST
FIRST BIT

UPDATE ADDRESS

READ AND TEST 0
SECOND BIT

READ MEMORY

OUTPUT 2 BITS 0 0
HARDWARE INSERTS

THIRD BIT AND
COMPARES 3 BITS 00 01 10 11

EIGHT-WAY BRANCH _ _ _ _ _ _ _ _

ON MATCH BIT WITH
FOURTH BIT COMPARE

PASS FAIL

Figure 25. Programmable controller serial-to-parallel compare firmware.

SYMBOL ALIGNMENT
CIRCUIT

Sul

PROGRAMMABLE
CONTROLLER

IDENTITY IGHUT-WAY
COMPARATOR S IGBR A

STROBE ADDRESS
RE1GISTERMERY

Figure 26. Programmable controller serial-to-parallel compare hardware.
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are wired high. This enables the mask to selectively set the corresponding firmware address
bits either high or low.

The 3-bit identity comparator can be implemented within the same PAL16R8 program-
mable array logic integrated circuit as used for the symbol alignment circuit. A schematic
for the identity comparator is shown in figure 27. The interconnection of the symbol align-
ment circuit, the programmable controller, and the register memory is shown in figure 28.
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SCLK5
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Figure 27. IEEE 802.5 symbol alignment circuit
schematic (sheet 3).
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Figure 28. IEEE 802.5 strobe detector partitioning.
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4.3. STROBE ADDRESS AND LABEL REGISTER IMPLEMENTATION

The selection of a strobe address register and strobe label register implementation is
partly determined by the desired width of their processor interface. Typically, wide proces-
sor interfaces employ individual register integrated circuit components, while narrow pro-
cessor interfaces employ small random access memory or first-in-first-out memory inte-
grated circuit components. Small random-access memory integrated circuits, also known as
register file integrated circuits, store more bits per integrated circuit component, but limit
the number of bits that can be accessed simultaneously. Therefore, a wide processor inter-
face has the advantage of faster processor access, both in hardware and software, and the
disadvantage of generally requiring more integrated circuit components to implement. Since
processor accesses of the strobe address register and strobe label register are infrequent,
consideration should be given to a narrow processor interface to reduce hardware costs.

A second factor affecting implementation selection is whether there is a requirement to
implement the strobe address register. Its implementation is required only when the strobe
address needs to be programmable. Otherwise, the strobe address can be incorporated with-
in the strobe detector firmware or hardware. The significance is more than merely one less
register to implement. The strobe address register and strobe labei register are accessed
differently. The same strobe address register contents are read by the strobe detector state
machine, at least in part, over and over again in response to each respective local area
network frame processed. The strobe label register contents, on the other hand, are read by
the processor only once per recognized strobe. Each new strobe replaces the strobe label
register contents with new contents. Both registers can be implemented using a random-
access memory, but only the strobe label register can be implemented using a first-in-first-
out memory. A first-in-first-out memory cannot be used for the strobe address register
because it would be impractical for the processor to constantly reload it for every frame
processed. If both registers are implemented, they can share the same random-access
memory component, making the first-in-first-out memory unnecessary.

Assuming that a programmable strobe address register is not required, there are two
advantages to implementing the strobe label register using first-in-first-out memory rather
than random-access memory. First-in-first-out memory does not require the strobe detector
state machine nor the processor to generate addresses for the individual access partitions
comprising the strobe label. This greatly simplifies the strobe detector state machine design
since neither inline sequential firmware nor a hardware counter are needed to generate
these addresses. The second advantage is that first-in-first-out memory integrated circuit
components require fewer pins because there are no address pins. This allows them to fit
into smaller physical packages compared to random-access memories.
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First-in-first-out memory integrated circuit components, such as the 4-bit by 16-word
74F224 [91] or 74ALS232A (921, have a narrow processor interface. Wider processor inter-

faces can be constructed by placing then, in parallel. This is illustrated by figure 29, where

two 74ALS232 first-in-first-out mernory integrated circuits provide a 4-bit interface to the
programmable controller and an 8-bit interface to the processor. The programmable control-

ler alternates between the two first-in-first-out memories, loading the bits that correspond to

the 4 least-significant bits of a byte in one and the bits that correspond to the 4 most-

significant bits of a byte into the other. For very wide processor interfaces, it is preferable to

use individual shift register integrated circuits such as the 74LS299 [93] or the faster 74F299

[94] 8-bit shift registers with three-state outputs. An implementation for a 32-bit processor

interface is shown in figure 30.

S PROGRAMMABLE

CONTROLLER

4-BI BUS

74ALS232 74ALS232

74LS1381
E 8-BIT BUS

Figure 29. Strobe label first-in-first-out memory implementation.

[91] See 74F224 in Signetics, FAST Logic Data Handbook, 1989, pp 6-256 - 6-262.

[92] See 74ALS232A in Texas Instruments, ALS/AS Logic Data Book, 1986, pp. 2-255 - 2-258.

[93] See 74LS299 in Texas Instruments, The TTL Data Book Volume 2, 1985, 3-957 - 3-960; Motorola,
FAST and LS TTL Data, 1,89, 5-248 - 5-251. The 74LS299 easily supports the 4-megahertz IEEE
802.5 bus, but is marginal for the 16-megahertz IEEE 802.5 bus.

[94] See 74F299 in Signetics, FAST Logic Data Handbook, 1989, pp. 6-347 - 6-352, with Sign( "-S,
FAST logic Supplement, 1990, pp. 53-55; Texas Instruments, F Logic Data Book, pp. 2-181 - 2-,85.
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Figure 30. Strobe label shift register implementation.

The strobe address register, when implemented, requires a random access memory or a
set of register integrated circuit components. Small random access memories suitable for
this purpose include the 16-word by 4-bit 74F219A [951 and the dual 16-word by 4-bit dual-
port 74ALS870 [96].

4.4. ALTERNATIVE STROBE GENERATION METHOD

Strobe generation is normally performed by a periodic software tas" executing within the
processor attached to one of the nodes. The strobe itself is a local area network frame
broadcast by that task to the address recognized by the strobe detectors of all the nodes
participating in the clock synchronization.

The IEEE 802.5 local area network offers an alternative approach. The alternative
defines the strobe as the active monitor present (AMP) [97] media access control frame.
Active monitor present frames are generated by the active monitor to assure other nodes
that there is a node acting as the active monitor for the ring. They are generated periodically
at the request of an interval timer, called the active monitor timer (TAM) [98]. When
received, an active monitor present frame resets a watchdog timer, called the standby moni-
tor timer (TSM), at each node [99]. If the standby monitor timer expires before being reset,

it is assumed that contact with the active monitor has been lost. The IEEE 802.5 specifies
"default" periods for the active monitor timer and standby monitor timer of 3 seconds and 7

[95] See 74F219A in Signetics, FA,,T Logic Data Handbook, 1989, pp. 6-249 - 6-254, with Signetics,

FAST Logic Supplement, 1990, pp. 31-26.

[96] See 74ALS870 in Texas Instruments, The TTL Data Book Volume 3, 1984, 2-613 - 2-617.

[97] See IEEE 802.5-1989, sec. 3.3.1.3, p. 33.

[98] See IEEE 802.5-1989, sec. 3.4.6, p. 40.

[99] See IEEE 802.5-1989, sec. 3.4.7, p. 40.
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seconds, respectively. The values actually used in practice, however, are 7 seconds for the
active monitor timer and 15 seconds for the standby monitor timer [100].

The advantages of defining the active monitor present frame as the strobe are (a) its
ability to provide strobes without the execution of software in the attached processor, (b) its
ability to identify the location of the latency buffer directly from the strobe frame source
address field, and (c) its ability to guarantee strobe generation at one, and only one, node
after local area network reconfiguration. The disadvantages of the approach are (a) its
inability to tune the length of the sample period to optimally support the clock synchroniza-

tion resolution magnitude requirements, (b) its inability to support strobes with different

addresses to separate independent clock synchronizations groups, and (c) its inability to be
applied to other local area network standards.

11001 These larger values are the result of an agreement among chip manufacturers participating in the
National Institute for Standards and Technology (NIST) IEEE 802.5 Implementers' Workshop. See also
Survivable Adaptable Fiber Optic Embedded Network I (SAFENET I) Military Handbook, NI1L-HDBK-
MCCR 0034 (Draft), 20 July 1989, sec. 7.3.1.1.1.
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5.0 SUMMARY OF CONCLUSIONS

The following summary highlights some of the major conclusions of this report. Preced-
ing sections provide more detail as well as additional conclusions.

The strobe distributed realtime clock synchronization technique, which has already been
incorporated into backplane bus standards, can also be applied to token ring local area
networks. The strobe is implemented as a frame protocol data unit whose destination
address field is recognized by the strobe detector at all the participating nodes. The strobe
frame source and information fields support the strobe label. The strobe technique does not
require modification of existing local area network standards.

Strobe detection should be performed in hardware rather than in software because hard-
ware minimizes the variation in the time between reception of the strobe and capture of the
realtime clock value.

The realtime clock synchronization support hardware, when partitioned, should be parti-
tioned at the interface between the strobe detector, which is driven by the local area network
timing, and the adjustable realtime clock, which is driven by the clock oscillator timing. The
strobe signal, which interfaces the two sections, can serve as an interrupt to notify the pro-
cessor of the presence of a new realtime clock sample value.

Strobe detectors for serial busses, including local area networks, are implemented as
hardware state machines. The state machine can be implemented using a counter. The
counter starts incrementing when it sees the protocol data unit starting delimiter and resets
when it encounters input failing to meet the requirements for a valid strobe. If the counter
reaches its final count, it indicates detection of a valid strobe.

The worst-case strobe resolution over IEEE 802.5 is plus or minus 0.75 microseconds for
the 4-megahertz bus and plus or minus 1 microsecond for the 16-megahertz bus. If the
location of the active monitor at the time of strobe transmission is not known to the proces-
sor software, the worst-case strobe resolution is plus or minus 3.75 microseconds for the
4-megahertz bus and plus or minus 1.75 microseconds for the 16-megahertz bus. If nothing
is known by the processor software about the current local area network ring configuration
at the time of strobe transmission, worst-case strobe resolution is only slightly better than
plus or minus half the maximum ring latency. The IEEE 802.5 standard specifies services
allowing software to obtain the ring configuration. There is overhead associated with deter-
mining the ring configuration. If a strobe resolution of plus or minus half the maximum ring
latency is good enough, then ignoring ring configuration is the preferred approach.
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The worst-case strobe resolution over FDDI degrades at 0.084 microsecond per node for
nodes that insert or delete single symbols and 0.164 microsecond per node for nodes that
insert or delete symbol pairs.

Hidden offset method interval timers are counters decremented by the same carry signal
that increments the most-significant portion of the clock counter visible to the user. Periodic
phase modification method interval timers are counters decremented by the phase counter.
The rate adjustment counter is an example of an interval timer. Phase accumulation method
interval timers can be implemented as sibtracter-accumulators similar to the clock counter
adder-accumulator. This approach requires considerable hardware. By sacrificing some
accuracy over long intervals, they can aiternatively be implemented as counters that decre-
ment by one on each tick cycle. The accuracy loss of a long timer interval can be compen-
sated by dividing it into a slightly shor:oer anticipatory long timer interval followed by an
accurate short timer interval whose length is determined using the realtime clock when the
anticipatory interval expires.

The tick modification method is similar to the periodic phase modification method ex-
cept that it inserts or delete ticks rather than phases to control clock rate. Contrary to appear-
ance, it does not eliminate the need for the phase counter function. The periodic phase
modification method provides better resolution than the tick modification method.

A variation of the clock value register software read atomic access approach sets the
least-significant bits to zero rather than concatenating the least-significant bits read by the
second access. The approach provides the correct clock value when its execution time is less
than the tick period. The software read atomic access approach can be extended to any
number of clock value access partitions using Lamport's algorithm.

The rate adjustment reload register needs atomic processor write access to prevent the
rate adjustment counter from loading a reload value that is only partially updated by the
processor. Atomic access can be implemented by disabling the rate adjustment counter
during processor writes of the rate adjustment reload register.

The value-rate aujustment algorithm is a local realtime clock synchronization algorithm
that uses value adjustment to correct the value error after the last adjustment and rate adjust-
ment in an attempt to prevent accumulation of any value error at the next adjustment. It is
suitable for applications where the rate of change of the realtime clock rate is small, such as
for realtime clocks driven by crystal oscillators.

There are several ways to minimize the adjustable rate realtime clock hardware. The
clock counter load function can be eliminated by having the software keep track of the
difference between the desired clock value and the actual hardware clock value and compen-

sating all reads of the hardware clock value by that amount before use. The width of the
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hardware sample register can be reduced by capturing only the least-significant bits that are
needed to uniquely distinguish the sample value from the realtime clock value given the
maximum delay between the time that the sample value is captured and the time that it is
read. Mathematical tables and formulas can be used to determine the minimum width and
scaling of the rate adjustment counter given the maximum and minimum rate adjustment
and the number of phases in a normal cycle of the phase counter.

A periodic phase modification adjustable-rate realtime clock can be implemented using
microprocessor peripheral timer integrated circuits. Although these integrated circuits do
not implement the sample register, the same function can be obtained using two internal
timers. The entire adjustable-rate realtime clock, with the exception of the phase counter
and a few miscellaneous gates, can be implemented within a single Am9513A integrated
circuit. The phase counter and miscellaneous gates fit easily within a small programmable
array logic integrated circuit.

An IEEE 802.5 strobe detector suitable for interface to the Texas Instruments TMS380
family of integrated circuits can be constructed from four integrated circuits. The first, a
PAL16R8, is used for differential Manchester decoding, symbol alignment, and implemen-
tation of a comparator to assist strobe address recognition. The second, an Am29CPL154
programmable controller, is used to recognize the sequence of symbols representing a valid
strobe and to extract the strobe label from the strobe frame. The other two integrated cir-
cuits are small memories used to store the strobe address supplied by the processor and the
strobe label extracted from the strobe frame. The strobe address must be stored in a random
access memory. The strobe label may be stored in either a first-in-first-out memory or a
random-access memory.

Additional integrated circuits may be required to interface the adjustable-rate realtime
clock and strobe detector to the internal processor bus. The number varies with the design of
the internal processor bus. It may be possible to implement the address decoding and control
logic within the unused portion of the programmable array logic associated with the
Am9513A-based implementation of the adjustable-rate realtime cloc':.
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APPENDIX A: TMS380 NODE RETRANSMISSION DELAY INQUIRY

The following is the text of the response from Texas Instruments to the author [1]
regarding the retransmission delay through the TMS380 components for the IEEE 802.5
local area network.

PROBLEM:

1. The data sheet in the TMS380 Adapter Chipset Users Guide (RevD) for the
TMS38020 on Page A23 states "High-Speed Frame Repeat Path Minimizes
Ring Latency (2 Bit Times)." Is this an accurate figure? How much jitter could
one expect to accumulate per n3de?

2. Same question but for the "second-generation" TMS389C16 components. I
have a copy of the "TMS380C16 & TMS38053 Data Sheet Packet August 1990
Preliminary Information." It gives hundreds of time parameters, but I don't
seem to know where to find what I need to compute ring latency.

RESPONSE:

1) The exact clocked station delay of the first-generation chip is 4.5-UI (unit
interval = 125 ns at 4 Mbit/s). In addition to this, there are propagation delays
that will further delay the repeated signal. These are not characterized, but are
expected to be in the 80 to 200-ns range.

Repeat path timing for first-generation (38021, 38051, 38052).

RCVIN 7

RCVR 12 3 11

RCLK

FEDRVR_

I - 4.5-UI Clocked Delay

The jitter to be expected depends on the ring topography. If lobe lengths are
kept to 200 m or less then, at 4 Mbits/s, the IEEE 802.5 spec currently allows
only 2.0 ns of data correlated jitter and nearly 12 ns of uncorrelated jitter.

11 Texas Instruments "TMS380 Technical Support Hotline" inquiry NAVI726A, FAX (713) 274-4027;
FAX inquiry acknowledgement, 21 Aug. 1991; phone response from Steve Hubbins, 4 Sep. 1991; FAX
response above, 24 Sep. 1991.
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Correlated jitter will accumulate proportional to the number of nodes. Uncor-
related jitter theoretically accumulates proportional to the square root of the
number of nodes.

2) The second-generation chipset has the same overall clocked station delay
as the first generation although the RCLK/RCVR timing is a little different. I
would also expect the propagation delay to be a little faster, perhaps 50 to 150
ns but again, we do not characterize or guarantee these. For both first- and
second-generation, the propagation delay will be process and temperature
dependent.
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